Kernel Local Sparse Representation Based Classifier

被引:0
|
作者
Qian Liu
机构
[1] Nanjing University of Information Science & Technology,Jiangsu Key Laboratory of Meteorological Observation and Information Processing, and School of Electronic & Information Engineering
来源
Neural Processing Letters | 2016年 / 43卷
关键词
Classifier; Sparse representation; Kernel theory ; Local neighbor structure; Manifold learning;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse representation-based classification (SRC) and its kernel extension methods have shown good classification performance. However, two drawbacks still exist in these classification methods: (1) These methods adopt a L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document}-minimization problem to achieve an approximate solution of sparse representation that is originally defined as a L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{0}$$\end{document}-norm optimization problem, which may lead to an increase in the average classification error. (2) These methods employ linear programming, second-order cone programming or unconstrained quadratic programming algorithm to solve the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document}-minimization problem, whose computing time increases rapidly with the number of training samples. In this paper, I incorporate the idea of manifold learning into kernel extension methods of SRC, and propose a novel classification approach, named kernel local sparse representation-based classifier (KLSRC). In the kernel feature space, KLSRC represents a target sample as a linear combination of merely a few nearby training samples, which is called a kernel local sparse representation (KLSR). And then the target sample is assigned to the class that minimizes the residual between itself and the partial KLSR constructed by its training neighbors from this class. Experimental results demonstrate the effectiveness of the proposed classifier.
引用
收藏
页码:85 / 95
页数:10
相关论文
共 50 条
  • [1] Kernel Local Sparse Representation Based Classifier
    Liu, Qian
    [J]. NEURAL PROCESSING LETTERS, 2016, 43 (01) : 85 - 95
  • [2] Kernel Sparse Representation-Based Classifier
    Zhang, Li
    Zhou, Wei-Da
    Chang, Pei-Chann
    Liu, Jing
    Yan, Zhe
    Wang, Ting
    Li, Fan-Zhang
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) : 1684 - 1695
  • [3] Nonparametric kernel sparse representation-based classifier
    Esmaeilzehi, Alireza
    Moghaddam, Hamid Abrishami
    [J]. PATTERN RECOGNITION LETTERS, 2017, 89 : 46 - 52
  • [4] Kernel Group Sparse Representation based Classifier for Multimodal Biometrics
    Goswami, Gaurav
    Singh, Richa
    Vatsa, Mayank
    Majumdar, Angshul
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2894 - 2901
  • [5] Greedy dictionary learning for kernel sparse representation based classifier
    Abrol, Vinayak
    Sharma, Pulkit
    Sao, Anil Kumar
    [J]. PATTERN RECOGNITION LETTERS, 2016, 78 : 64 - 69
  • [6] Face Recognition Based on Dictionary Learning and Kernel Sparse Representation Classifier
    LingCao
    Zhu, Yu
    Chen, Ning
    Xiao, Yuling
    [J]. 2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 480 - 485
  • [7] Speech emotion recognition using kernel sparse representation based classifier
    Sharma, Pulkit
    Abrol, Vinayak
    Sachdev, Abhijeet
    Dileep, A. D.
    Sao, Anil Kumar
    [J]. 2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 374 - 377
  • [8] Kernel sparse representation-based classifier ensemble for face recognition
    Zhang, Li
    Zhou, Wei-Da
    Li, Fan-Zhang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (01) : 123 - 137
  • [9] Kernel sparse representation-based classifier ensemble for face recognition
    Li Zhang
    Wei-Da Zhou
    Fan-Zhang Li
    [J]. Multimedia Tools and Applications, 2015, 74 : 123 - 137
  • [10] Proposals for local basis selection for the sparse representation-based classifier
    F. Dornaika
    Y. El Traboulsi
    [J]. Signal, Image and Video Processing, 2018, 12 : 1595 - 1601