Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis

被引:1
|
作者
Lu, Yue M. [1 ]
Onativia, Jon [2 ,3 ]
Dragotti, Pier Luigi [2 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Egile, Mendaro 20850, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Sparse representation; union of bases; Prony's method; uncertainty principle; average-case analysis; SIGNAL RECOVERY; UNCERTAINTY PRINCIPLES; CORRUPTED SIGNALS; PAIRS;
D O I
10.1109/TIT.2017.2735450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding the sparse representation of a signal in an overcomplete dictionary has attracted a lot of attention over the past years. This paper studies ProSparse, a new polynomial complexity algorithm that solves the sparse representation problem when the underlying dictionary is the union of a Vandermonde matrix and a banded matrix. Unlike our previous work, which establishes deterministic (worst-case) sparsity bounds for ProSparse to succeed, this paper presents a probabilistic average-case analysis of the algorithm. Based on a generating-function approach, closed-form expressions for the exact success probabilities of ProSparse are given. The success probabilities are also analyzed in the high-dimensional regime. This asymptotic analysis characterizes a sharp phase transition phenomenon regarding the performance of the algorithm.
引用
收藏
页码:2639 / 2647
页数:9
相关论文
共 50 条
  • [31] Local Connectivity Enhanced Sparse Representation
    Tang, Kewei
    Cao, Liying
    Li, Jinhong
    Peng, Xingxuan
    Su, Zhixun
    Sun, Xiyan
    Luo, Xiaonan
    IEEE ACCESS, 2020, 8 : 159854 - 159863
  • [32] Face Verification With Local Sparse Representation
    Duan, Chih-Hsueh
    Chiang, Chen-Kuo
    Lai, Shang-Hong
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (02) : 177 - 180
  • [33] Intrinsic Images Decomposition Using a Local and Global Sparse Representation of Reflectance
    Shen, Li
    Yeo, Chuohao
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 697 - 704
  • [34] Acceleration of Local Intensity Compensation Using Sparse Representation with Parallel Processing
    Isechi, Kohei
    Kuroki, Yoshimitsu
    2014 IEEE 3RD GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2014, : 153 - 156
  • [35] Robust ear identification using sparse representation of local texture descriptors
    Kumar, Ajay
    Chan, Tak-Shing T.
    PATTERN RECOGNITION, 2013, 46 (01) : 73 - 85
  • [36] Face Recognition in Uncontrolled Conditions Using Sparse Representation and Local Features
    Adamo, Alessandro
    Grossi, Giuliano
    Lanzarotti, Raffaella
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 31 - 40
  • [37] SAR Target Recognition Using Improved Sparse Representation with Local Reconstruction
    Ma, Li
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [38] ROBUST OBJECT TRACKING BASED ON DISCRIMINATIVE ANALYSIS AND LOCAL SPARSE REPRESENTATION
    Tian, Peng
    Lv, JiangHua
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3600 - 3604
  • [39] Probabilistic analysis with sparse data
    McDonald, M. (markphilipmcdonald@gmail.com), 1600, AIAA International (51):
  • [40] Probabilistic Analysis with Sparse Data
    McDonald, Mark
    Zaman, Kais
    Mahadevan, Sankaran
    AIAA JOURNAL, 2013, 51 (02) : 281 - 290