Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis

被引:1
|
作者
Lu, Yue M. [1 ]
Onativia, Jon [2 ,3 ]
Dragotti, Pier Luigi [2 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Egile, Mendaro 20850, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Sparse representation; union of bases; Prony's method; uncertainty principle; average-case analysis; SIGNAL RECOVERY; UNCERTAINTY PRINCIPLES; CORRUPTED SIGNALS; PAIRS;
D O I
10.1109/TIT.2017.2735450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding the sparse representation of a signal in an overcomplete dictionary has attracted a lot of attention over the past years. This paper studies ProSparse, a new polynomial complexity algorithm that solves the sparse representation problem when the underlying dictionary is the union of a Vandermonde matrix and a banded matrix. Unlike our previous work, which establishes deterministic (worst-case) sparsity bounds for ProSparse to succeed, this paper presents a probabilistic average-case analysis of the algorithm. Based on a generating-function approach, closed-form expressions for the exact success probabilities of ProSparse are given. The success probabilities are also analyzed in the high-dimensional regime. This asymptotic analysis characterizes a sharp phase transition phenomenon regarding the performance of the algorithm.
引用
收藏
页码:2639 / 2647
页数:9
相关论文
共 50 条
  • [1] On Sparse Representation in Fourier and Local Bases
    Dragotti, Pier Luigi
    Lu, Yue M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7888 - 7899
  • [2] Probabilistic Analysis Using High Dimensional Model Representation and Fast Fourier Transform
    Rao, B. N.
    Chowdhury, Rajib
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2008, 9 (06): : 342 - 357
  • [3] On sparse representation in pairs of bases
    Feuer, A
    Nemirovski, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1579 - 1581
  • [4] Dedicated processor for hologram calculation using sparse Fourier bases
    Yasuki, Daiki
    Blinder, David
    Shimobaba, Tomoyoshi
    Yamamoto, Yota
    Hoshi, Ikuo
    Schelkens, Peter
    Kakue, Takashi
    Ito, Tomoyoshi
    APPLIED OPTICS, 2020, 59 (26) : 8029 - 8037
  • [5] Local Intensity Compensation using Sparse Representation
    Inoue, Koji
    Saito, Hironobu
    Kuroki, Yoshimitsu
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 951 - 954
  • [6] Local Intensity Compensation using Sparse Representation with Additional Sparse Dictionary
    Isechi, Kohei
    Kuroki, Yoshimitsu
    2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2014,
  • [7] Sparse Representation with Nonlinear Fourier Atoms
    Suter, Bruce W.
    Wang, Yi
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2016, 8 (02)
  • [8] Fourier ptychographic microscopy with sparse representation
    Zhang, Yongbing
    Song, Pengming
    Zhang, Jian
    Dai, Qionghai
    SCIENTIFIC REPORTS, 2017, 7
  • [9] Fourier ptychographic microscopy with sparse representation
    Yongbing Zhang
    Pengming Song
    Jian Zhang
    Qionghai Dai
    Scientific Reports, 7
  • [10] Abnormal Event Detection Using Local Sparse Representation
    Ren, Huamin
    Moeslund, Thomas B.
    2014 11TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2014, : 125 - 130