On sparse representation in pairs of bases

被引:82
|
作者
Feuer, A [1 ]
Nemirovski, A
机构
[1] Technion Israel Inst Technol, Control & Robot Lab, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Ind Engn & Management, IL-32000 Haifa, Israel
关键词
dictionary; sparse representation; tight frame;
D O I
10.1109/TIT.2003.811926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In previous work, Elad and Bruckstein (EB) have provided a sufficient condition for replacing an l(o) optimization by linear programming minimization when searching for the unique sparse representation. We establish here that the EB condition is both sufficient and necessary.
引用
收藏
页码:1579 / 1581
页数:3
相关论文
共 50 条
  • [1] New inequalities on sparse representation in pairs of bases
    Xu Guanlei
    Wang Xiaotong
    Zhou Lijia
    Xu Xiaogang
    IET SIGNAL PROCESSING, 2013, 7 (08) : 674 - 683
  • [2] A generalized uncertainty principle and sparse representation in pairs of bases
    Elad, M
    Bruckstein, AM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) : 2558 - 2567
  • [3] A New Method Using Table to Sparse Representation in Pairs of Bases with Matching Pursuits
    An, Qinli
    Feng, Youqian
    Gao, Dahua
    Yu, Fuping
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 93 : 246 - +
  • [4] On Sparse Representation in Fourier and Local Bases
    Dragotti, Pier Luigi
    Lu, Yue M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7888 - 7899
  • [5] Spectral regularization and sparse representation bases for interferometric imaging
    Vannier, M.
    Mary, D.
    Millour, F.
    Petrov, R. G.
    Bourguignon, S.
    Theys, C.
    OPTICAL AND INFRARED INTERFEROMETRY II, 2010, 7734
  • [6] SPARSE SYSTEM IDENTIFICATION IN PAIRS OF PULSE AND TAKENAKA-MALMQUIST BASES
    Xiong, Dan
    Chai, Li
    Zhang, Jingxin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) : 965 - 985
  • [7] Uncertainty principle and sparse reconstruction in pairs of orthonormal rational function bases
    Xiong, Dan
    Chai, Li
    Zhang, Jingxin
    SIGNAL PROCESSING, 2020, 166
  • [8] Multiscale bases for the sparse representation of boundary integral operators on complex geometry
    Tausch, J
    White, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05): : 1610 - 1629
  • [9] Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis
    Lu, Yue M.
    Onativia, Jon
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2639 - 2647
  • [10] REMOTE SENSING IMAGE FUSION USING BEST BASES SPARSE REPRESENTATION
    Iqbal, Mahboob
    Chen, Lie
    Wen, Xian-Zhong
    Li, Chun-Sheng
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5430 - 5433