Split operator solution of the time-dependent Maxwell's equations for random scatterers

被引:0
|
作者
Su, Q [1 ]
Mandel, S [1 ]
Menon, S [1 ]
Grobe, R [1 ]
机构
[1] Illinois State Univ, Intense Laser Phys Theory Unit, Normal, IL 61790 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We discuss how a spectral-domain method in combination with a split-operator technique can be used to calculate exact solutions of the time-dependent Maxwell's equations. We apply this technique to study the propagation of alight pulse through an inhomogeneous medium consisting of multiple random scatterers. We investigate the validity of the Boltzmann equation by directly comparing its solution with the ensemble averaged Maxwell solution.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 50 条
  • [21] Chebyshev method to solve the time-dependent Maxwell equations
    De Raedt, H
    Michielsen, K
    Kole, JS
    Figge, MT
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV, 2003, 90 : 211 - 215
  • [22] OPTIMAL CONTROL OF THE FULL TIME-DEPENDENT MAXWELL EQUATIONS
    Bommer, Vera
    Yousept, Irwin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (01): : 237 - 261
  • [23] Time-dependent Ginzburg-Landau Maxwell equations
    Waseda Univ, Tokyo, Japan
    Nonlinear Anal Theory Methods Appl, 2 (187-216):
  • [24] Fully discrete finite element approaches for time-dependent Maxwell's equations
    Ciarlet, P
    Zou, J
    NUMERISCHE MATHEMATIK, 1999, 82 (02) : 193 - 219
  • [25] Fully discrete finite element approaches for time-dependent Maxwell's equations
    Ciarlet Jr. P.
    Zou J.
    Numerische Mathematik, 1999, 82 (2) : 193 - 219
  • [26] Time-dependent current source identification for numerical simulations of Maxwell's equations
    Benoit, J.
    Chauviere, C.
    Bonnet, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 289 : 116 - 128
  • [27] Finite element study of time-dependent Maxwell's equations in dispersive media
    Li, Jichun
    Chen, Yitung
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) : 1203 - 1221
  • [28] Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains:: the singular complement method
    Assous, F
    Ciarlet, P
    Labrunie, S
    Segré, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) : 147 - 176
  • [29] A COMPARISON OF 3 MIXED METHODS FOR THE TIME-DEPENDENT MAXWELL EQUATIONS
    MONK, P
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05): : 1097 - 1122
  • [30] New numerical methods for solving the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    COMPUTATIONAL ACCELERATOR PHYSICS 2002, 2005, 175 : 63 - 72