Split operator solution of the time-dependent Maxwell's equations for random scatterers

被引:0
|
作者
Su, Q [1 ]
Mandel, S [1 ]
Menon, S [1 ]
Grobe, R [1 ]
机构
[1] Illinois State Univ, Intense Laser Phys Theory Unit, Normal, IL 61790 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We discuss how a spectral-domain method in combination with a split-operator technique can be used to calculate exact solutions of the time-dependent Maxwell's equations. We apply this technique to study the propagation of alight pulse through an inhomogeneous medium consisting of multiple random scatterers. We investigate the validity of the Boltzmann equation by directly comparing its solution with the ensemble averaged Maxwell solution.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 50 条
  • [41] Unified framework for numerical methods to solve the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 156 (01) : 43 - 61
  • [42] Determination of a time-dependent convolution kernel from a boundary measurement in nonlinear Maxwell's equations
    Slodicka, Marian
    Galba, Michal
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (06) : 1484 - 1500
  • [43] A Numerical Method for the Solution of Time-Harmonic Maxwell Equations for Two-Dimensional Scatterers
    Pisarenco, Maxim
    Maubach, Joseph
    Setija, Irwan
    Mattheij, Robert
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2049 - +
  • [44] Time-dependent projection operator and nonlinear generalized master equations
    Los, Victor F.
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [45] A Fourier penalty method for solving the time-dependent Maxwell's equations in domains with curved boundaries
    Galagusz, Ryan
    Shirokoff, David
    Nave, Jean-Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 306 : 167 - 198
  • [46] Effective Maxwell equations from time-dependent density functional theory
    E Weinan
    Jianfeng Lu
    Xu Yang
    Acta Mathematica Sinica, English Series, 2011, 27 : 339 - 368
  • [47] Effective Maxwell Equations from Time-dependent Density Functional Theory
    E, Weinan
    Lu, Jianfeng
    Yang, Xu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (02) : 339 - 368
  • [48] Uniform Regularity for the Time-Dependent Ginzburg-Landau-Maxwell Equations
    Fan, Jishan
    Ozawa, Tohru
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 301 - 306
  • [49] GAUSS-COMPATIBLE GALERKIN SCHEMES FOR TIME-DEPENDENT MAXWELL EQUATIONS
    Pinto, Martin Campos
    Sonnendruecker, Eric
    MATHEMATICS OF COMPUTATION, 2016, 85 (302) : 2651 - 2685
  • [50] APPROXIMATE CLOAKING FOR TIME-DEPENDENT MAXWELL EQUATIONS VIA TRANSFORMATION OPTICS
    Hoai-Minh Nguyen
    Tran, Loc X.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4142 - 4171