Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis

被引:3
|
作者
Savova, Virginia [1 ]
Pearl, Esther J. [2 ]
Boke, Elvan [1 ]
Nag, Anwesha [3 ,4 ]
Adzhubei, Ivan [5 ]
Horb, Marko E. [2 ]
Peshkin, Leonid [1 ]
机构
[1] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
[2] Natl Xenopus Resource & Bell Ctr Regenerat Biol &, Marine Biol Lab, Woods Hole, MA 02543 USA
[3] Harvard Med Sch, Dana Farber Canc Inst, 450 Brookline Ave, Boston, MA 02215 USA
[4] Harvard Med Sch, Dept Genet, 450 Brookline Ave, Boston, MA 02215 USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Div Genet, Boston, MA 02115 USA
关键词
EVOLUTION; GENOME; DISCOVERY;
D O I
10.1016/j.ydbio.2017.02.019
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We characterize the genetic diversity of Xenopus laevis strains using RNA-seq data and allele-specific analysis. This data provides a catalogue of coding variation, which can be used for improving the genomic sequence, as well as for better sequence alignment, probe design, and proteomic analysis. In addition, we paint a broad picture of the genetic landscape of the species by functionally annotating different classes of mutations with a well-established prediction tool (PolyPhen-2). Further, we specifically compare the variation in the progeny of four crosses: inbred genomic (J)-strain, outbred albino (B)-strain, and two hybrid crosses of J and B strains. We identify a subset of mutations specific to the B strain, which allows us to investigate the selection pressures affecting duplicated genes in this allotetraploid. From these crosses we find the ratio of non-synonymous to synonymous mutations is lower in duplicated genes, which suggests that they are under greater purifying selection. Surprisingly, we also find that function-altering ("damaging") mutations constitute a greater fraction of the non-synonymous variants in this group, which suggests a role for subfunctionalization in coding variation affecting duplicated genes.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 50 条
  • [21] Identifying protein-coding genes in genomic sequences
    Jennifer Harrow
    Alinda Nagy
    Alexandre Reymond
    Tyler Alioto
    Laszlo Patthy
    Stylianos E Antonarakis
    Roderic Guigó
    Genome Biology, 10
  • [22] PROMOTER SEQUENCES OF EUKARYOTIC PROTEIN-CODING GENES
    CORDEN, J
    WASYLYK, B
    BUCHWALDER, A
    CORSI, PS
    KEDINGER, C
    CHAMBON, P
    SCIENCE, 1980, 209 (4463) : 1406 - 1414
  • [23] Evolutionary diversification of protein-coding genes of hantaviruses
    Hughes, AL
    Friedman, R
    MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (10) : 1558 - 1568
  • [24] Neurodevelopmental Disorders: Beyond protein-coding genes
    Lozano-Urena, Anna
    Ferron, Sacri R.
    ELIFE, 2019, 8
  • [25] Computational prediction of eukaryotic protein-coding genes
    Michael Q. Zhang
    Nature Reviews Genetics, 2002, 3 : 698 - 709
  • [26] Ablating all mitochondrial protein-coding genes
    Xin Lou
    Bin Shen
    Nature Biomedical Engineering, 2023, 7 : 609 - 611
  • [27] Identifying protein-coding genes in genomic sequences
    Harrow, Jennifer
    Nagy, Alinda
    Reymond, Alexandre
    Alioto, Tyler
    Patthy, Laszlo
    Antonarakis, Stylianos E.
    Guigo, Roderic
    GENOME BIOLOGY, 2009, 10 (01): : 201
  • [28] The Functional Meaning of 5′UTR in Protein-Coding Genes
    Ryczek, Natalia
    Lys, Aneta
    Makalowska, Izabela
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [29] Dataset of the frequency patterns of publications annotated to human protein-coding genes, their protein products and genetic relevance
    Zwick, Matthias
    Kraemer, Oliver
    Carter, Adrian J.
    DATA IN BRIEF, 2019, 25
  • [30] Differentially expressed protein-coding genes in ankylosing spondylitis: Emerging insights into pathogenesis and therapeutic approaches
    Xiao, Chuyu
    Zhou, Jingyang
    Zhang, Bin
    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2023, 26 (08) : 1440 - 1452