Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis

被引:3
|
作者
Savova, Virginia [1 ]
Pearl, Esther J. [2 ]
Boke, Elvan [1 ]
Nag, Anwesha [3 ,4 ]
Adzhubei, Ivan [5 ]
Horb, Marko E. [2 ]
Peshkin, Leonid [1 ]
机构
[1] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
[2] Natl Xenopus Resource & Bell Ctr Regenerat Biol &, Marine Biol Lab, Woods Hole, MA 02543 USA
[3] Harvard Med Sch, Dana Farber Canc Inst, 450 Brookline Ave, Boston, MA 02215 USA
[4] Harvard Med Sch, Dept Genet, 450 Brookline Ave, Boston, MA 02215 USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Div Genet, Boston, MA 02115 USA
关键词
EVOLUTION; GENOME; DISCOVERY;
D O I
10.1016/j.ydbio.2017.02.019
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We characterize the genetic diversity of Xenopus laevis strains using RNA-seq data and allele-specific analysis. This data provides a catalogue of coding variation, which can be used for improving the genomic sequence, as well as for better sequence alignment, probe design, and proteomic analysis. In addition, we paint a broad picture of the genetic landscape of the species by functionally annotating different classes of mutations with a well-established prediction tool (PolyPhen-2). Further, we specifically compare the variation in the progeny of four crosses: inbred genomic (J)-strain, outbred albino (B)-strain, and two hybrid crosses of J and B strains. We identify a subset of mutations specific to the B strain, which allows us to investigate the selection pressures affecting duplicated genes in this allotetraploid. From these crosses we find the ratio of non-synonymous to synonymous mutations is lower in duplicated genes, which suggests that they are under greater purifying selection. Surprisingly, we also find that function-altering ("damaging") mutations constitute a greater fraction of the non-synonymous variants in this group, which suggests a role for subfunctionalization in coding variation affecting duplicated genes.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 50 条
  • [31] Ovule siRNAs methylate protein-coding genes in trans
    Burgess, Diane
    Chow, Hiu Tung
    Grover, Jeffrey W.
    Freeling, Michael
    Mosher, Rebecca A.
    PLANT CELL, 2022, 34 (10): : 3647 - 3664
  • [32] Expression of protein-coding genes embedded in ribosomal DNA
    Johansen, Steinar D.
    Haugen, Peik
    Nielsen, Henrik
    BIOLOGICAL CHEMISTRY, 2007, 388 (07) : 679 - 686
  • [33] Expression of mitochondrial protein-coding genes in Tetrahymena pyriformis
    Edqvist, J
    Burger, G
    Gray, MW
    JOURNAL OF MOLECULAR BIOLOGY, 2000, 297 (02) : 381 - 393
  • [34] Phylogenetic informativeness of mitochondrial protein-coding genes in Nematoda
    Ma, X.
    Baeza, J. A.
    Richards, V.
    Agudelo, P. A.
    PHYTOPATHOLOGY, 2020, 110 (07) : 4 - 4
  • [35] POSITIONING OF PROTEIN-CODING GENES ON THE SOYBEAN CHLOROPLAST GENOME
    SINGH, GP
    WALLEN, DG
    PILLAY, DTN
    PLANT MOLECULAR BIOLOGY, 1985, 4 (2-3) : 87 - 93
  • [36] Distinguishing protein-coding and noncoding genes in the human genome
    Clamp, Michele
    Fry, Ben
    Kamal, Mike
    Xie, Xiaohui
    Cuff, James
    Lin, Michael F.
    Kellis, Manolis
    Lindblad-Toh, Kerstin
    Lander, Eric S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) : 19428 - 19433
  • [37] Transcription start sites at the end of protein-coding genes
    Huang, Ming-Yu
    Liu, Ji-Long
    HUMAN GENOMICS, 2018, 12
  • [38] De Novo Origin of Human Protein-Coding Genes
    Wu, Dong-Dong
    Irwin, David M.
    Zhang, Ya-Ping
    PLOS GENETICS, 2011, 7 (11)
  • [39] Reconciling the numbers: ESTs versus protein-coding genes
    Nekrutenko, A
    MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (07) : 1278 - 1282
  • [40] Current methods for automated annotation of protein-coding genes
    Hoff, K. J.
    Stanke, M.
    CURRENT OPINION IN INSECT SCIENCE, 2015, 7 : 8 - 14