Spatio-temporal Reconstruction of dPET Data Using Complex Wavelet Regularisation

被引:0
|
作者
McLennan, Andrew [1 ]
Brady, Michael [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
关键词
IMAGE-RECONSTRUCTION; PET; ALGORITHM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traditionally, dynamic PET studies reconstruct temporally contiguous PET images using algorithms which ignore the inherent consistency between frames. We present a method which imposes a regularisation constraint based on wavelet denoising. This is achieved efficiently using the Dual Tree - Complex Wavelet Transform (DT-CWT) of Kingsbury, which has many important advantages over the traditional discrete wavelet transform: shift invariance, implicit measure of local phase, and directional selectivity. In this paper, we apply the decomposition to the full spatio-temporal volume and use it for the reconstruction of dynamic (spatio-temporal) PET data. Instead of using traditional wavelet thresholding schemes we introduce a locally defined and empirically-determined Cross Scale regularisation technique. We show that wavelet based regularisation has the potential to produce superior reconstructions and examine the effect various levels of boundary enhancement have on the overall images. We demonstrate that wavelet-based spatio-temporally regularised reconstructions have superior performance over conventional Gaussian smoothing in simulated and clinical experiments. We find that our method outperforms conventional methods in terms of signal-to-noise ratio (SNR) and Mean Square Error (MSE), and removes the need to post-smooth the reconstruction.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 50 条
  • [21] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [22] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [23] Super-resolution reconstruction using spatio-temporal filtering
    Goldberg, N
    Feuer, A
    Goodwin, GC
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2003, 14 (04) : 508 - 525
  • [24] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [25] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [26] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [27] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [28] A Two-Step Method for Missing Spatio-Temporal Data Reconstruction
    Cheng, Shifen
    Lu, Feng
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (07)
  • [29] Subsampled terahertz data reconstruction based on spatio-temporal dictionary learning
    Abolghasemi, Vahid
    Shen, Hao
    Shen, Yaochun
    Gan, Lu
    DIGITAL SIGNAL PROCESSING, 2015, 43 : 1 - 7
  • [30] Functional distributional clustering using spatio-temporal data
    Venkatasubramaniam, A.
    Evers, L.
    Thakuriah, P.
    Ampountolas, K.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 909 - 926