Spatio-temporal Reconstruction of dPET Data Using Complex Wavelet Regularisation

被引:0
|
作者
McLennan, Andrew [1 ]
Brady, Michael [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
关键词
IMAGE-RECONSTRUCTION; PET; ALGORITHM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traditionally, dynamic PET studies reconstruct temporally contiguous PET images using algorithms which ignore the inherent consistency between frames. We present a method which imposes a regularisation constraint based on wavelet denoising. This is achieved efficiently using the Dual Tree - Complex Wavelet Transform (DT-CWT) of Kingsbury, which has many important advantages over the traditional discrete wavelet transform: shift invariance, implicit measure of local phase, and directional selectivity. In this paper, we apply the decomposition to the full spatio-temporal volume and use it for the reconstruction of dynamic (spatio-temporal) PET data. Instead of using traditional wavelet thresholding schemes we introduce a locally defined and empirically-determined Cross Scale regularisation technique. We show that wavelet based regularisation has the potential to produce superior reconstructions and examine the effect various levels of boundary enhancement have on the overall images. We demonstrate that wavelet-based spatio-temporally regularised reconstructions have superior performance over conventional Gaussian smoothing in simulated and clinical experiments. We find that our method outperforms conventional methods in terms of signal-to-noise ratio (SNR) and Mean Square Error (MSE), and removes the need to post-smooth the reconstruction.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 50 条
  • [41] Spatio-temporal wavelet transforms for digital signal analysis
    Leduc, JP
    SIGNAL PROCESSING, 1997, 60 (01) : 23 - 41
  • [42] Spatio-temporal wavelet transforms for motion tracking.
    Leduc, JP
    Mujica, F
    Murenzi, R
    Smith, M
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3013 - 3016
  • [43] Spatio-temporal Soil Moisture Estimation Using Neural Network with Wavelet Preprocessing
    Kulaglic, Ajla
    Ustundag, B. Berk
    2017 6TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2017, : 130 - 135
  • [44] Identification of multiscale spatio-temporal dynamical systems using a wavelet multiresolution analysis
    Guo, L. Z.
    Billings, S. A.
    Coca, D.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (11) : 1115 - 1126
  • [45] WORKING WITH SPATIO-TEMPORAL DATA TYPE
    Raza, Ale
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION II, 2012, 39-B2 : 5 - 10
  • [46] Differential Privacy on Spatio-Temporal Data
    Li, Yi
    Ning, Bo
    Bai, Mei
    Zheng, Yawen
    Wang, Yu
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE & APPLICATION TECHNOLOGY (ICCIA 2017), 2017, 74 : 503 - 507
  • [47] SQL extension for spatio-temporal data
    Viqueira, Jose R. Rios
    Lorentzos, Nikos A.
    VLDB JOURNAL, 2007, 16 (02): : 179 - 200
  • [48] A Spatio-temporal Data Compression Algorithm
    Wang, Lei
    Guo, Yiming
    Chen, Chen
    Yan, Yaowei
    2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, : 421 - 424
  • [49] SQL extension for spatio-temporal data
    Jose R. Rios Viqueira
    Nikos A. Lorentzos
    The VLDB Journal, 2007, 16 : 179 - 200
  • [50] RFID spatio-temporal data management
    Yonghui, W. (yonghuiwang@sjzu.edu.cn), 2013, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):