Recurrence and transience of a multi-excited random walk on a regular tree

被引:9
|
作者
Basdevant, Anne-Laure [1 ]
Singh, Arvind [2 ]
机构
[1] Inst Math Toulouse, Toulouse, France
[2] Univ Zurich, Inst Math, CH-8006 Zurich, Switzerland
来源
关键词
Multi-excited random walk; self-interacting random walk; branching Markov chain; COOKIE RANDOM-WALK; MARKOV-CHAINS; DIMENSION; INTEGERS;
D O I
10.1214/EJP.v14-672
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a model of multi-excited random walk on a regular tree which generalizes the models of the once excited random walk and the digging random walk introduced by Volkov ( 2003). We show the existence of a phase transition and provide a criterion for the recurrence/transience property of the walk. In particular, we prove that the asymptotic behaviour of the walk depends on the order of the excitations, which contrasts with the one dimensional setting studied by Zerner (2005). We also consider the limiting speed of the walk in the transient regime and conjecture that it is not a monotonic function of the environment.
引用
收藏
页码:1628 / 1669
页数:42
相关论文
共 50 条
  • [21] A Note on Transience of Generalized Multi-Dimensional Excited Random Walks
    Alves, Rodrigo B.
    Iacobelli, Giulio
    Valle, Glauco
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1927 - 1943
  • [22] Transience of Edge-Reinforced Random Walk
    Margherita Disertori
    Christophe Sabot
    Pierre Tarrès
    Communications in Mathematical Physics, 2015, 339 : 121 - 148
  • [23] Transience of Edge-Reinforced Random Walk
    Disertori, Margherita
    Sabot, Christophe
    Tarres, Pierre
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 121 - 148
  • [24] Transience and recurrence of sets for branching random walk via non-standard stochastic orders
    Hutchcroft, Tom
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 1041 - 1051
  • [25] A criterion for transience of multidimensional branching random walk in random environment
    Mueller, Sebastian
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1189 - 1202
  • [26] Recurrence and Transience of Random Walks¶in Random Environments on a Strip
    Erwin Bolthausen
    Ilya Goldsheid
    Communications in Mathematical Physics, 2000, 214 : 429 - 447
  • [27] Recurrence and transience of random walks in random environments on a strip
    Bolthausen, E
    Goldsheid, I
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 429 - 447
  • [28] Monotone interaction of walk and graph: recurrence versus transience
    Dembo, Amir
    Huang, Ruojun
    Sidoravicius, Vladas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 12
  • [29] FROM TRANSIENCE TO RECURRENCE WITH POISSON TREE FROGS
    Hoffman, Christopher
    Johnson, Tobias
    Junge, Matthew
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (03): : 1620 - 1635
  • [30] EXCITED RANDOM WALK
    Benjamini, Itai
    Wilson, David B.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 : 86 - 92