Transience of Edge-Reinforced Random Walk

被引:24
|
作者
Disertori, Margherita [1 ,2 ]
Sabot, Christophe [3 ]
Tarres, Pierre [4 ,5 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
[3] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[4] Univ Paris 09, CEREMADE, CNRS UMR 7534, F-75775 Paris 16, France
[5] Univ Paris 09, F-75775 Paris 16, France
关键词
JUMP-PROCESSES; TREES; LOCALIZATION; GRAPHS;
D O I
10.1007/s00220-015-2392-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show transience of the edge-reinforced random walk (ERRW) for small reinforcement in dimension . This proves the existence of a phase transition between recurrent and transient behavior, thus solving an open problem stated by Diaconis in 1986. The argument adapts the proof of quasi-diffusive behavior of the supersymmetric (SuSy) hyperbolic model for fixed conductances by Disertori et al. (Commun Math Phys 300:435-486, 2010), using the representation of ERRW as a mixture of vertex-reinforced jump processes (VRJP) with independent gamma conductances, and the interpretation of the limit law of VRJP as a SuSy hyperbolic sigma model developed by Sabot and TarrSs (J Eur Math Soc, arXiv:1111.3991, 2015).
引用
收藏
页码:121 / 148
页数:28
相关论文
共 50 条
  • [1] Transience of Edge-Reinforced Random Walk
    Margherita Disertori
    Christophe Sabot
    Pierre Tarrès
    [J]. Communications in Mathematical Physics, 2015, 339 : 121 - 148
  • [2] Edge-reinforced random walk on a ladder
    Merkl, F
    Rolles, SWW
    [J]. ANNALS OF PROBABILITY, 2005, 33 (06): : 2051 - 2093
  • [3] On the recurrence of edge-reinforced random walk on ℤ×G
    Silke W.W. Rolles
    [J]. Probability Theory and Related Fields, 2006, 135 : 216 - 264
  • [4] Once edge-reinforced random walk on a tree
    Durrett, R
    Kesten, H
    Limic, V
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 567 - 592
  • [5] CORRELATION INEQUALITIES FOR EDGE-REINFORCED RANDOM WALK
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 753 - 763
  • [6] Once edge-reinforced random walk on a tree
    Rick Durrett
    Harry Kesten
    Vlada Limic
    [J]. Probability Theory and Related Fields, 2002, 122 : 567 - 592
  • [7] How edge-reinforced random walk arises naturally
    Silke W.W. Rolles
    [J]. Probability Theory and Related Fields, 2003, 126 : 243 - 260
  • [8] How edge-reinforced random walk arises naturally
    Rolles, SWW
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) : 243 - 260
  • [9] On the recurrence of edge-reinforced random walk on Z x G
    Rolles, SWW
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (02) : 216 - 264
  • [10] Bounding a random environment for two-dimensional edge-reinforced random walk
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 530 - 565