Once edge-reinforced random walk on a tree

被引:0
|
作者
Rick Durrett
Harry Kesten
Vlada Limic
机构
[1] Department of Mathematics,
[2] Malott Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA. e-mail: rtd1@cornell.edu; kesten@math.cornell.edu; limic@math.cornell.edu,undefined
来源
关键词
Random Walk; Invariance Principle; Linear Rate; Regular Tree; Neighbor Walk;
D O I
暂无
中图分类号
学科分类号
摘要
 We consider a nearest neighbor walk on a regular tree, with transition probabilities proportional to weights or conductances of the edges. Initially all edges have weight 1, and the weight of an edge is increased to $c > 1$ when the edge is traversed for the first time. After such a change the weight of an edge stays at $c$ forever. We show that such a walk is transient for all values of $c \ge 1$, and that the walk moves off to infinity at a linear rate. We also prove an invariance principle for the height of the walk.
引用
收藏
页码:567 / 592
页数:25
相关论文
共 50 条
  • [1] Once edge-reinforced random walk on a tree
    Durrett, R
    Kesten, H
    Limic, V
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 567 - 592
  • [2] A Once edge-reinforced random walk on a Galton-Watson tree is transient
    Dai, JJ
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 73 (02) : 115 - 124
  • [3] Transience of Edge-Reinforced Random Walk
    Disertori, Margherita
    Sabot, Christophe
    Tarres, Pierre
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 121 - 148
  • [4] Edge-reinforced random walk on a ladder
    Merkl, F
    Rolles, SWW
    [J]. ANNALS OF PROBABILITY, 2005, 33 (06): : 2051 - 2093
  • [5] Transience of Edge-Reinforced Random Walk
    Margherita Disertori
    Christophe Sabot
    Pierre Tarrès
    [J]. Communications in Mathematical Physics, 2015, 339 : 121 - 148
  • [6] On the recurrence of edge-reinforced random walk on ℤ×G
    Silke W.W. Rolles
    [J]. Probability Theory and Related Fields, 2006, 135 : 216 - 264
  • [7] CORRELATION INEQUALITIES FOR EDGE-REINFORCED RANDOM WALK
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 753 - 763
  • [8] How edge-reinforced random walk arises naturally
    Silke W.W. Rolles
    [J]. Probability Theory and Related Fields, 2003, 126 : 243 - 260
  • [9] How edge-reinforced random walk arises naturally
    Rolles, SWW
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) : 243 - 260
  • [10] On the recurrence of edge-reinforced random walk on Z x G
    Rolles, SWW
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (02) : 216 - 264