Recurrence and transience of a multi-excited random walk on a regular tree

被引:9
|
作者
Basdevant, Anne-Laure [1 ]
Singh, Arvind [2 ]
机构
[1] Inst Math Toulouse, Toulouse, France
[2] Univ Zurich, Inst Math, CH-8006 Zurich, Switzerland
来源
关键词
Multi-excited random walk; self-interacting random walk; branching Markov chain; COOKIE RANDOM-WALK; MARKOV-CHAINS; DIMENSION; INTEGERS;
D O I
10.1214/EJP.v14-672
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a model of multi-excited random walk on a regular tree which generalizes the models of the once excited random walk and the digging random walk introduced by Volkov ( 2003). We show the existence of a phase transition and provide a criterion for the recurrence/transience property of the walk. In particular, we prove that the asymptotic behaviour of the walk depends on the order of the excitations, which contrasts with the one dimensional setting studied by Zerner (2005). We also consider the limiting speed of the walk in the transient regime and conjecture that it is not a monotonic function of the environment.
引用
收藏
页码:1628 / 1669
页数:42
相关论文
共 50 条
  • [41] A LIMIT LAW FOR THE MOST FAVORITE POINT OF SIMPLE RANDOM WALK ON A REGULAR TREE
    Biskup, Marek
    Louidor, Oren
    ANNALS OF PROBABILITY, 2024, 52 (02): : 502 - 544
  • [42] On the Study of Transience and Recurrence of the Markov Chain Defined by Directed Weighted Circuits Associated with a Random Walk in Fixed Environment
    Ganatsiou, Chrysoula
    JOURNAL OF PROBABILITY AND STATISTICS, 2013, 2013
  • [43] A balanced excited random walk
    Benjamini, Itai
    Kozma, Gady
    Schapira, Bruno
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (7-8) : 459 - 462
  • [44] Martingale defocusing and transience of a self-interacting random walk
    Peres, Yuval
    Schapira, Bruno
    Sousi, Perla
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1009 - 1022
  • [45] Recurrence of random walk traces
    Benjamini, Itai
    Gurel-Gurevich, Ori
    Lyons, Russell
    ANNALS OF PROBABILITY, 2007, 35 (02): : 732 - 738
  • [46] On recurrence and transience of self-interacting random walks
    Yuval Peres
    Serguei Popov
    Perla Sousi
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 841 - 867
  • [47] On recurrence and transience of self-interacting random walks
    Peres, Yuval
    Popov, Serguei
    Sousi, Perla
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (04): : 841 - 867
  • [48] RECURRENCE AND TRANSIENCE FOR RANDOM-WALKS WITH STATIONARY INCREMENTS
    BERBEE, H
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04): : 531 - 536
  • [49] Correction to: Conservative and Semiconservative Random Walks: Recurrence and Transience
    Vyacheslav M. Abramov
    Journal of Theoretical Probability, 2019, 32 : 541 - 543
  • [50] Recurrence and transience of random difference equations in the critical case
    Alsmeyer, Gerold
    Iksanov, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 606 - 620