Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices

被引:32
|
作者
Olson, B. V. [1 ]
Grein, C. H. [2 ]
Kim, J. K. [1 ]
Kadlec, E. A. [1 ]
Klem, J. F. [1 ]
Hawkins, S. D. [1 ]
Shaner, E. A. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
关键词
LAYER SUPERLATTICES; CARRIER LIFETIMES; PERFORMANCE; GAP; DETECTORS; HGCDTE;
D O I
10.1063/1.4939147
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 X 10(-26) cm(6)/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K . p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices
    Kim, H. S.
    Cellek, O. O.
    Lin, Zhi-Yuan
    He, Zhao-Yu
    Zhao, Xin-Hao
    Liu, Shi
    Li, H.
    Zhang, Y. -H.
    APPLIED PHYSICS LETTERS, 2012, 101 (16)
  • [2] Bandgap and temperature dependence of Auger recombination in InAs/InAsSb type-II superlattices
    Aytac, Y.
    Olson, B. V.
    Kim, J. K.
    Shaner, E. A.
    Hawkins, S. D.
    Klem, J. F.
    Olesberg, J.
    Flatte, M. E.
    Boggess, T. F.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (21)
  • [3] Photoluminescence study of carrier recombination processes in InAs/InAsSb type-II superlattices
    Lin, Zhi-Yuan
    Fan, Jin
    Liu, Shi
    Zhang, Yong-Hang
    INFRARED TECHNOLOGY AND APPLICATIONS XLI, 2015, 9451
  • [4] Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices
    Brown, A. E.
    Baril, N.
    Zuo, D.
    Almeida, L. A.
    Arias, J.
    Bandara, S.
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (09) : 5367 - 5373
  • [5] Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices
    A. E. Brown
    N. Baril
    D. Zuo
    L. A. Almeida
    J. Arias
    S. Bandara
    Journal of Electronic Materials, 2017, 46 : 5367 - 5373
  • [6] Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys
    Olson, B. V.
    Shaner, E. A.
    Kim, J. K.
    Klem, J. F.
    Hawkins, S. D.
    Flatte, M. E.
    Boggess, T. F.
    APPLIED PHYSICS LETTERS, 2013, 103 (05)
  • [7] Emerging Type-II Superlattices of InAs/InAsSb and InAs/GaSb for Mid-Wavelength Infrared Photodetectors
    Alshahrani, Dhafer O.
    Kesaria, Manoj
    Anyebe, Ezekiel A.
    Srivastava, V
    Huffaker, Diana L.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (02):
  • [8] Mid-infrared InAs/InAsSb Type-II superlattices grown on silicon by MOCVD
    Brown, Richard
    Ratiu, Bogdan Petrin
    Jia, Hui
    Azizur-Rahman, Khalifa M.
    Dang, Manyu
    Tang, Mingchu
    Liang, Baolai
    Liu, Huiyun
    Li, Qiang
    JOURNAL OF CRYSTAL GROWTH, 2022, 598
  • [9] Carrier transport properties of Be-doped InAs/InAsSb type-II infrared superlattices
    Steenbergen, E. H.
    Elhamri, S.
    Mitchel, W. C.
    Mou, Shin
    Brown, G. J.
    APPLIED PHYSICS LETTERS, 2014, 104 (01)
  • [10] High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection
    Hoang, A. M.
    Chen, G.
    Chevallier, R.
    Haddadi, A.
    Razeghi, M.
    APPLIED PHYSICS LETTERS, 2014, 104 (25)