A robust inverse regression estimator

被引:6
|
作者
Ni, Liqiang [1 ]
Cook, R. Dennis
机构
[1] Univ Cent Florida, Dept Stat & Actuarial Sci, Orlando, FL 32816 USA
[2] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
基金
美国国家科学基金会;
关键词
central subspace; inverse regression estimator; sufficient dimension reduction;
D O I
10.1016/j.spl.2006.07.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A family of dimension reduction methods was developed by Cook and Ni [Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. J. Amer. Statist. Assoc. 100, 410-428.] via minimizing a quadratic objective function. Its optimal member called the inverse regression estimator (IRE) was proposed. However, its calculation involves higher order moments of the predictors. In this article, we propose a robust version of the IRE that only uses second moments of the predictor for estimation and inference, leading to better small sample results. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 50 条
  • [31] Almost Unbiased Ridge Estimator in the Inverse Gaussian Regression Model
    Al-Taweel, Younus Hazim
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 510 - 526
  • [32] Two-parameter estimator for the inverse Gaussian regression model
    Akram, Muhammad Naumanm
    Amin, Muhammad
    Amanullah, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 6208 - 6226
  • [33] Two parameter Ridge estimator in the inverse Gaussian regression model
    Bulut, Y. Murat
    Isilar, Melike
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 895 - 910
  • [34] New robust remote reference estimator using robust multivariate linear regression
    Usui, Yoshiya
    Uyeshima, Makoto
    Sakanaka, Shin'ya
    Hashimoto, Tasuku
    Ichiki, Masahiro
    Kaida, Toshiki
    Yamaya, Yusuke
    Ogawa, Yasuo
    Masuda, Masataka
    Akiyama, Takahiro
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 238 (02) : 943 - 959
  • [35] A robust and efficient estimator for the tail index of inverse Pareto distribution
    Safari, Muhammad Aslam Mohd
    Masseran, Nurulkamal
    Ibrahim, Kamarulzaman
    Hussain, Saiful Izzuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 517 : 431 - 439
  • [36] Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator
    Nguyen, Viet Anh
    Kuhn, Daniel
    Esfahani, Peyman Mohajerin
    OPERATIONS RESEARCH, 2022, 70 (01) : 490 - 515
  • [37] Level Robust Methods Based on the Least Squares Regression Estimator
    Ng, Marie
    Wilcox, Rand R.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2009, 8 (02) : 384 - 395
  • [38] A robust estimator of the tail index based on an exponential regression model
    Vandewalle, B
    Beirlant, J
    Hubert, A
    THEORY AND APPLICATION OF RECENT ROBUST METHODS, 2004, : 367 - 376
  • [39] On a robust local estimator for the scale function in heteroscedastic nonparametric regression
    Boente, Graciela
    Ruiz, Marcelo
    Zamar, Ruben H.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (15-16) : 1185 - 1195
  • [40] The Performance of a Robust Multistage Estimator in Nonlinear Regression with Heteroscedastic Errors
    Riazoshams, Hossein
    Midi, Habshah Bt.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3394 - 3415