The Performance of a Robust Multistage Estimator in Nonlinear Regression with Heteroscedastic Errors

被引:2
|
作者
Riazoshams, Hossein [1 ,2 ]
Midi, Habshah Bt. [3 ,4 ]
机构
[1] Islamic Azad Univ, Lamerd Branch, Dept Stat, Lamerd, Iran
[2] Stockholm Univ, Dept Stat, Stockholm, Sweden
[3] Univ Putra Malaysia, Fac Sci, Serdang, Malaysia
[4] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
关键词
Heteroscedastic errors; Nonlinear regression; Outliers; Robust statistics; Sample variances;
D O I
10.1080/03610918.2014.944657
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, a robust multistage parameter estimator is proposed for nonlinear regression with heteroscedastic variance, where the residual variances are considered as a general parametric function of predictors. The motivation is based on considering the chi-square distribution for the calculated sample variance of the data. It is shown that outliers that are influential in nonlinear regression parameter estimates are not necessarily influential in calculating the sample variance. This matter persuades us, not only to robustify the estimate of the parameters of the models for both the regression function and the variance, but also to replace the sample variance of the data by a robust scale estimate.
引用
收藏
页码:3394 / 3415
页数:22
相关论文
共 50 条