Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers

被引:7
|
作者
Dorugade, A. V. [1 ]
机构
[1] YC Mahavidyalaya, Stat, Halkarni, Maharashtra, India
关键词
Heteroscedasticity; mean squared error; multicollinearity; outlier; ridge estimator;
D O I
10.22237/jmasm/1478002860
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new estimator, of ridge parameter k for ridge regression and then evaluated by Monte Carlo simulation. We examine the performance of the proposed estimators compared with other well-known estimators for the model with heteroscedastics and/or correlated errors, outlier observations, non-normal errors and suffer from the problem of multicollinearity. It is shown that proposed estimators have a smaller MSE than the ordinary least squared estimator (LS), Hoerl and Kennard (1970) estimator (RR), jackknifed modified ridge (JMR) estimator, and Jackknifed Ridge M-estimator (JRM).
引用
收藏
页码:362 / 381
页数:20
相关论文
共 50 条