Two parameter Ridge estimator in the inverse Gaussian regression model

被引:5
|
作者
Bulut, Y. Murat [1 ]
Isilar, Melike [2 ]
机构
[1] Eskisehir Osmangazi Univ, Fac Sci & Letters, Dept Stat, TR-26040 Eskisehir, Turkey
[2] Eskisehir Osmangazi Univ, Grad Sch Nat & Appl Sci, TR-26040 Eskisehir, Turkey
来源
关键词
inverse Gaussian regression; biased estimators; two parameter Ridge estimator; multicollinearity; MEAN-SQUARE ERROR; PERFORMANCE;
D O I
10.15672/hujms.813540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that multicollinearity, which occurs among the explanatory variables, has adverse effects on the maximum likelihood estimator in the inverse Gaussian regression model. Biased estimators are proposed to cope with the multicollinearity problem in the inverse Gaussian regression model. The main interest of this article is to introduce a new biased estimator. Also, we compare newly proposed estimator with the other estimators given in the literature. We conduct a Monte Carlo simulation and provide a real data example to illustrate the performance of the proposed estimator over the maximum likelihood and Ridge estimators. As a result of the simulation study and real data example, the newly proposed estimator is superior to the other estimators used in this study.
引用
收藏
页码:895 / 910
页数:16
相关论文
共 50 条
  • [1] Two-parameter estimator for the inverse Gaussian regression model
    Akram, Muhammad Naumanm
    Amin, Muhammad
    Amanullah, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 6208 - 6226
  • [2] Restricted ridge estimator in the Inverse Gaussian regression model
    Alsarraf, Israa Najeeb Saeed
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 574 - 587
  • [3] Performance of ridge estimator in inverse Gaussian regression model
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) : 3836 - 3849
  • [4] Almost Unbiased Ridge Estimator in the Inverse Gaussian Regression Model
    Al-Taweel, Younus Hazim
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 510 - 526
  • [5] TWO PARAMETER RIDGE ESTIMATOR FOR THE BELL REGRESSION MODEL
    Melike, Isilar
    Y. Murat, Bulut
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 712 - 723
  • [6] Modified ridge-type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Ullah, Muhammad Aman
    Afzal, Saima
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (10) : 3314 - 3332
  • [7] Principal component ridge type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Lukman, Adewale F.
    Afzal, Saima
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (10) : 2060 - 2089
  • [8] A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics
    Shamany, Rehad Emad
    Alobaidi, Nada Nazar
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2019, 12 (02) : 453 - 464
  • [9] Modified two parameter ridge estimator for beta regression model
    Junaid, Ayesha
    Khan, Aamna
    Alrumayh, Amani
    Alghamdi, Fatimah M.
    Hussam, Eslam
    Aljohani, Hassan M.
    Alrashidi, Afaf
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (02)
  • [10] The KL estimator for the inverse Gaussian regression model
    Lukman, Adewale F.
    Algannal, Zakariya Y.
    Kibria, B. M. Golam
    Ayinde, Kayode
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13):