Two parameter Ridge estimator in the inverse Gaussian regression model

被引:5
|
作者
Bulut, Y. Murat [1 ]
Isilar, Melike [2 ]
机构
[1] Eskisehir Osmangazi Univ, Fac Sci & Letters, Dept Stat, TR-26040 Eskisehir, Turkey
[2] Eskisehir Osmangazi Univ, Grad Sch Nat & Appl Sci, TR-26040 Eskisehir, Turkey
来源
关键词
inverse Gaussian regression; biased estimators; two parameter Ridge estimator; multicollinearity; MEAN-SQUARE ERROR; PERFORMANCE;
D O I
10.15672/hujms.813540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that multicollinearity, which occurs among the explanatory variables, has adverse effects on the maximum likelihood estimator in the inverse Gaussian regression model. Biased estimators are proposed to cope with the multicollinearity problem in the inverse Gaussian regression model. The main interest of this article is to introduce a new biased estimator. Also, we compare newly proposed estimator with the other estimators given in the literature. We conduct a Monte Carlo simulation and provide a real data example to illustrate the performance of the proposed estimator over the maximum likelihood and Ridge estimators. As a result of the simulation study and real data example, the newly proposed estimator is superior to the other estimators used in this study.
引用
收藏
页码:895 / 910
页数:16
相关论文
共 50 条
  • [21] A New Two-Parameter Estimator for the Poisson Regression Model
    Yasin Asar
    Aşır Genç
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 793 - 803
  • [22] A new robust ridge parameter estimator based on search method for linear regression model
    Goktas, Atila
    Akkus, Ozge
    Kuvat, Aykut
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2457 - 2472
  • [23] Ridge estimator in a mixed Poisson regression model
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3253 - 3270
  • [24] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [25] Jackknifing Ridge Estimator for Logistic Regression Model
    Hammood, Nawal Mahmood
    Algamal, Zakariya Yahya
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2022, 18 (04) : 955 - 961
  • [26] Developing a ridge estimator for the gamma regression model
    Algamal, Zakariya Yahya
    JOURNAL OF CHEMOMETRICS, 2018, 32 (10)
  • [27] Modified ridge estimator in the Bell regression model
    Bulut, Y. Murat
    Lukman, Adewale F.
    Isilar, Melike
    Adewuyi, Emmanuel T.
    Algamal, Zakariya Y.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (06): : 1081 - 1091
  • [28] A jackknifed ridge estimator in probit regression model
    Asar, Yasin
    Kilinc, Kadriye
    STATISTICS, 2020, 54 (04) : 667 - 685
  • [29] Restricted ridge estimator in the logistic regression model
    Asar, Yasin
    Arashi, Mohammad
    Wu, Jibo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6538 - 6544
  • [30] A modified ridge estimator in Cox regression model
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,