Lithia formation mechanism in tin oxide anodes for lithium-ion rechargeable batteries

被引:26
|
作者
Kim, Young-Jun [1 ]
Lee, Hyukjae [2 ]
Sohn, Hun-Joon [3 ]
机构
[1] Korea Elect Technol Inst, Green Energy Res Ctr, Songnam 463816, Gyeonggi, South Korea
[2] Andong Natl Univ, Sch Adv Mat Engn, Ctr Green Mat Technol, Andong 760745, Gyungbuk, South Korea
[3] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
关键词
Tin oxide anode; Li ion batteries; Lithia formation; Auger spectroscopy; X-RAY-DIFFRACTION; ELECTRODE; INSERTION;
D O I
10.1016/j.elecom.2009.09.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The lithia formation mechanism in tin oxide anode is investigated using electrochemical measurements and Auger spectroscopy. Based on the charge/discharge capacities for SnO electrode, the atomic ratio of Li to O in lithia is less than 2 at the discharge capacity of 400 mAh/g (similar to 0.9 V). The derivative capacity plots show that the irreversible reaction occurs throughout the entire discharge to 0 V, and the atomic ratio of Li to O is about 1 at similar to 0.8 V and 2 at 0 V. Auger spectroscopy analysis also confirms that the atomic ratio of Li to O approaches to 2 only when discharged to 0 V. Thus, Li2O appears to have formed at 0 V in the first discharge, not similar to 0.8 V as reported previously, such that the initial lithia composition is more like Li2O2 (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2125 / 2128
页数:4
相关论文
共 50 条
  • [41] MXenes for Rechargeable Batteries Beyond the Lithium-Ion
    Ming, Fangwang
    Liang, Hanfeng
    Huang, Gang
    Bayhan, Zahra
    Alshareef, Husam N.
    [J]. ADVANCED MATERIALS, 2021, 33 (01)
  • [42] Lithium-ion/iron sulphide rechargeable batteries
    Ritchie, AG
    Bowles, G
    Scattergood, DP
    [J]. JOURNAL OF POWER SOURCES, 2004, 136 (02) : 276 - 280
  • [43] Fundamental problems of lithium-ion rechargeable batteries
    A. Yu. Tsivadze
    T. L. Kulova
    A. M. Skundin
    [J]. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49 : 145 - 150
  • [44] Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries
    He, Jun
    Wei, Yaqing
    Zhai, Tianyou
    Li, Huiqiao
    [J]. MATERIALS CHEMISTRY FRONTIERS, 2018, 2 (03) : 437 - 455
  • [45] Diffusional lithium trapping as a failure mechanism of aluminum foil anodes in lithium-ion batteries
    Crowley, Patrick J.
    Scanlan, Kevin P.
    Manthiram, Arumugam
    [J]. JOURNAL OF POWER SOURCES, 2022, 546
  • [46] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    [J]. ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672
  • [47] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    [J]. NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38
  • [48] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    [J]. Russian Journal of Electrochemistry, 2015, 51 : 899 - 907
  • [49] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    [J]. RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [50] Analysis of SiO anodes for lithium-ion batteries
    Miyachi, M
    Yamamoto, H
    Kawai, H
    Ohta, T
    Shirakata, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) : A2089 - A2091