Lithia formation mechanism in tin oxide anodes for lithium-ion rechargeable batteries

被引:26
|
作者
Kim, Young-Jun [1 ]
Lee, Hyukjae [2 ]
Sohn, Hun-Joon [3 ]
机构
[1] Korea Elect Technol Inst, Green Energy Res Ctr, Songnam 463816, Gyeonggi, South Korea
[2] Andong Natl Univ, Sch Adv Mat Engn, Ctr Green Mat Technol, Andong 760745, Gyungbuk, South Korea
[3] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
关键词
Tin oxide anode; Li ion batteries; Lithia formation; Auger spectroscopy; X-RAY-DIFFRACTION; ELECTRODE; INSERTION;
D O I
10.1016/j.elecom.2009.09.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The lithia formation mechanism in tin oxide anode is investigated using electrochemical measurements and Auger spectroscopy. Based on the charge/discharge capacities for SnO electrode, the atomic ratio of Li to O in lithia is less than 2 at the discharge capacity of 400 mAh/g (similar to 0.9 V). The derivative capacity plots show that the irreversible reaction occurs throughout the entire discharge to 0 V, and the atomic ratio of Li to O is about 1 at similar to 0.8 V and 2 at 0 V. Auger spectroscopy analysis also confirms that the atomic ratio of Li to O approaches to 2 only when discharged to 0 V. Thus, Li2O appears to have formed at 0 V in the first discharge, not similar to 0.8 V as reported previously, such that the initial lithia composition is more like Li2O2 (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2125 / 2128
页数:4
相关论文
共 50 条
  • [11] Scalable Fabrication of Nanostructured Tin Oxide Anodes for High Energy Lithium-Ion Batteries
    Heubner, Christian
    Liebmann, Tobias
    Voigt, Karsten
    Weiser, Mathias
    Matthey, Bjoern
    Junker, Nils
    Laemmel, Christoph
    Schneider, Michael
    Michaelis, Alexander
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (32) : 27019 - 27029
  • [12] LITHIUM-ION RECHARGEABLE BATTERIES
    MEGAHED, S
    SCROSATI, B
    JOURNAL OF POWER SOURCES, 1994, 51 (1-2) : 79 - 104
  • [13] Dendrite formation in silicon anodes of lithium-ion batteries
    Selis, Luis A.
    Seminario, Jorge M.
    RSC ADVANCES, 2018, 8 (10) : 5255 - 5267
  • [14] Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries
    Zhang, Wei-Jun
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 877 - 885
  • [15] Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review
    Mou, Haoyi
    Xiao, Wei
    Miao, Chang
    Li, Rui
    Yu, Liming
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [16] Development and characterization of nanostructure tin alloys as anodes in lithium-ion batteries
    Peled, E
    Ulus, A
    Rosenberg, Y
    NEW MATERIALS FOR BATTERIES AND FUEL CELLS, 2000, 575 : 151 - 163
  • [17] Development and characterization of nanostructure tin alloys as anodes in lithium-ion batteries
    Peled, E.
    Ulus, A.
    Rosenberg, Y.
    2000, Materials Research Society, Warrendale, PA, United States (575):
  • [18] Layered Tin Phosphide Composites as Promising Anodes for Lithium-Ion Batteries
    Liu, Quanyi
    Liu, Chuanbang
    Li, Zhifa
    Liang, Qinghua
    Zhu, Bo
    Chai, Jingchao
    Cheng, Xin
    Zheng, Penglun
    Zheng, Yun
    Liu, Zhihong
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) : 11306 - 11313
  • [19] Tin dioxide-based nanomaterials as anodes for lithium-ion batteries
    Wang, Minkang
    Chen, Tianrui
    Liao, Tianhao
    Zhang, Xinglong
    Zhu, Bin
    Tang, Hui
    Dai, Changsong
    RSC ADVANCES, 2021, 11 (02) : 1200 - 1221
  • [20] Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries
    Fan, Quan
    Whittingham, M. Stanley
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (03) : A48 - A51