Permutation polynomials, de Bruijn sequences, and linear complexity

被引:31
|
作者
Blackburn, SR [1 ]
Etzion, T [1 ]
Paterson, KG [1 ]
机构
[1] UNIV LONDON,ROYAL HOLLOWAY & BEDFORD NEW COLL,DEPT COMP SCI,EGHAM TW20 0EX,SURREY,ENGLAND
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jcta.1996.0088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper establishes a connection between the theory of permutation polynomials and the question of whether a de Bruijn sequence over a general finite held of a given linear complexity exists. The connection is used both to construct span 1 de Bruijn sequences (permutations) of a range of linear complexities and to prove non-existence results for arbitrary spans. Upper and lower bounds for the linear complexity of a de Bruijn sequence of span n over a finite field are established. Constructions are given to show that the upper bound is always tight, and that the lower bound is also tight in many cases. (C) 1996 Academic Press, Inc.
引用
收藏
页码:55 / 82
页数:28
相关论文
共 50 条
  • [11] Construction of de Bruijn sequences from product of two irreducible polynomials
    Chang, Zuling
    Ezerman, Martianus Frederic
    Ling, San
    Wang, Huaxiong
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (02): : 251 - 275
  • [12] Construction of de Bruijn Sequences From LFSRs With Reducible Characteristic Polynomials
    Li, Chaoyun
    Zeng, Xiangyong
    Li, Chunlei
    Helleseth, Tor
    Li, Ming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 610 - 624
  • [13] On binary de Bruijn sequences from LFSRs with arbitrary characteristic polynomials
    Chang, Zuling
    Ezerman, Martianus Frederic
    Ling, San
    Wang, Huaxiong
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 1137 - 1160
  • [14] On binary de Bruijn sequences from LFSRs with arbitrary characteristic polynomials
    Zuling Chang
    Martianus Frederic Ezerman
    San Ling
    Huaxiong Wang
    Designs, Codes and Cryptography, 2019, 87 : 1137 - 1160
  • [15] De Bruijn sequences and De Bruijn graphs for a general language
    Moreno, E
    INFORMATION PROCESSING LETTERS, 2005, 96 (06) : 214 - 219
  • [16] A New Approach to Determine the Minimal Polynomials of Binary Modified de Bruijn Sequences
    Musthofa
    Wijayanti, Indah Emilia
    Palupi, Diah Junia Eksi
    Ezerman, Martianus Frederic
    MATHEMATICS, 2022, 10 (15)
  • [17] On extending de Bruijn sequences
    Becher, Veronica
    Ariel Heiber, Pablo
    INFORMATION PROCESSING LETTERS, 2011, 111 (18) : 930 - 932
  • [18] Balanced de Bruijn Sequences
    Marcovich, Sagi
    Etzion, Tuvi
    Yaakobi, Eitan
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1528 - 1533
  • [19] A Class of de Bruijn Sequences
    Li, Chaoyun
    Zeng, Xiangyong
    Li, Chunlei
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7955 - 7969
  • [20] Enumerating De Bruijn sequences
    Rosenfeld, VR
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2002, (45) : 71 - 83