Permutation polynomials, de Bruijn sequences, and linear complexity

被引:31
|
作者
Blackburn, SR [1 ]
Etzion, T [1 ]
Paterson, KG [1 ]
机构
[1] UNIV LONDON,ROYAL HOLLOWAY & BEDFORD NEW COLL,DEPT COMP SCI,EGHAM TW20 0EX,SURREY,ENGLAND
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jcta.1996.0088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper establishes a connection between the theory of permutation polynomials and the question of whether a de Bruijn sequence over a general finite held of a given linear complexity exists. The connection is used both to construct span 1 de Bruijn sequences (permutations) of a range of linear complexities and to prove non-existence results for arbitrary spans. Upper and lower bounds for the linear complexity of a de Bruijn sequence of span n over a finite field are established. Constructions are given to show that the upper bound is always tight, and that the lower bound is also tight in many cases. (C) 1996 Academic Press, Inc.
引用
收藏
页码:55 / 82
页数:28
相关论文
共 50 条
  • [31] A note on linear permutation polynomials
    Yuan, Pingzhi
    Zeng, Xiangneng
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (05) : 488 - 491
  • [32] Constructing Orthogonal de Bruijn Sequences
    Lin, Yaw-Ling
    Ward, Charles
    Jain, Bharat
    Skiena, Steven
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 595 - +
  • [33] Coordination through De Bruijn sequences
    Gossner, O
    Hernández, P
    OPERATIONS RESEARCH LETTERS, 2006, 34 (01) : 17 - 21
  • [34] A remark on linear permutation polynomials
    Zhou, Kai
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) : 532 - 536
  • [35] An Unoriented Variation on de Bruijn Sequences
    Christie S. Burris
    Francis C. Motta
    Patrick D. Shipman
    Graphs and Combinatorics, 2017, 33 : 845 - 858
  • [36] de Bruijn sequences and perfect factors
    Mitchell, CJ
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1997, 10 (02) : 270 - 281
  • [37] On cross joining de Bruijn sequences
    Mykkeltveit, Johannes
    Szmidt, Janusz
    TOPICS IN FINITE FIELDS, 2015, 632 : 335 - 346
  • [38] CORRELATION PROPERTIES OF DE BRUIJN SEQUENCES
    章照止
    陈文德
    SystemsScienceandMathematicalSciences, 1989, (02) : 170 - 183
  • [39] An Unoriented Variation on de Bruijn Sequences
    Burris, Christie S.
    Motta, Francis C.
    Shipman, Patrick D.
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 845 - 858
  • [40] On Characteristic Functions of De Bruijn Sequences
    Tang Zhenwei
    Qi Wenfeng
    Tian Tian
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (02) : 304 - 311