Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges

被引:16
|
作者
Ellrott, Kyle [1 ]
Buchanan, Alex [1 ]
Creason, Allison [1 ]
Mason, Michael [2 ]
Schaffter, Thomas [3 ]
Hoff, Bruce [2 ]
Eddy, James [2 ]
Chilton, John M. [4 ]
Yu, Thomas [2 ]
Stuart, Joshua M. [5 ]
Saez-Rodriguez, Julio [6 ,7 ,8 ]
Stolovitzky, Gustavo [3 ]
Boutros, Paul C. [9 ,10 ,11 ,12 ,13 ,14 ,15 ]
Guinney, Justin [2 ,16 ]
机构
[1] Oregon Hlth & Sci Univ, Biomed Engn, Portland, OR 97239 USA
[2] Sage Bionetworks, Seattle, WA 98121 USA
[3] IBM Res, Yorktown Hts, NY USA
[4] Penn State Univ, Dept Biochem & Mol Biol, State Coll, PA USA
[5] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[6] Heidelberg Univ, Fac Med, Inst Computat Biomed, Heidelberg, Germany
[7] Heidelberg Univ Hosp, Bioquant, Heidelberg, Germany
[8] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed, Aachen, Germany
[9] Ontario Inst Canc Res, Toronto, ON, Canada
[10] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[11] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON, Canada
[12] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[13] Univ Calif Los Angeles, Dept Urol, Los Angeles, CA USA
[14] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
[15] Univ Calif Los Angeles, Inst Precis Hlth, Los Angeles, CA USA
[16] Univ Washington, Biomed Informat & Med Educ, Seattle, WA 98195 USA
关键词
EXPRESSION;
D O I
10.1186/s13059-019-1794-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Challenges are achieving broad acceptance for addressing many biomedical questions and enabling tool assessment. But ensuring that the methods evaluated are reproducible and reusable is complicated by the diversity of software architectures, input and output file formats, and computing environments. To mitigate these problems, some challenges have leveraged new virtualization and compute methods, requiring participants to submit cloud-ready software packages. We review recent data challenges with innovative approaches to model reproducibility and data sharing, and outline key lessons for improving quantitative biomedical data analysis through crowd-sourced benchmarking challenges.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling
    Luebben, Christian
    Pahl, Marc-Oliver
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,
  • [42] Using Qualitative Spatial Logic for Validating Crowd-Sourced Geospatial Data
    Du, Heshan
    Hai Nguyen
    Alechina, Natasha
    Logan, Brian
    Jackson, Michael
    Goodwin, John
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3948 - 3953
  • [43] A Map Framework Using Crowd-Sourced Data for Indoor Positioning and Navigation
    Graichen, Thomas
    Gruschka, Erik
    Heinkel, Ulrich
    2017 IEEE INTERNATIONAL WORKSHOP ON MEASUREMENT AND NETWORKING (M&N), 2017, : 217 - 222
  • [44] Crowd-Sourced Data Collection for Urban Monitoring via Mobile Sensors
    Longo, Antonella
    Zappatore, Marco
    Bochicchio, Mario
    Navathe, Shamkant B.
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2017, 18 (01)
  • [45] Predicting Streamflow Duration From Crowd-Sourced Flow Observations
    Peterson, David A.
    Kampf, Stephanie K.
    Puntenney-Desmond, Kira C.
    Fairchild, Matthew P.
    Zipper, Sam
    Hammond, John C.
    Ross, Matthew R. V.
    Sears, Megan G.
    WATER RESOURCES RESEARCH, 2024, 60 (01)
  • [46] Predicting Venue Popularity Using Crowd-Sourced and Passive Sensor Data
    Timokhin, Stanislav
    Sadrani, Mohammad
    Antoniou, Constantinos
    SMART CITIES, 2020, 3 (03): : 818 - 841
  • [47] Designing Data Validation Framework for Crowd-Sourced Road Monitoring Applications
    Saha J.
    Roy S.
    Das T.K.
    Purkait K.
    Chowdhury C.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (04) : 1083 - 1096
  • [48] Building a crowd-sourced challenge using clinical trial data.
    Zhou, Fang Liz
    Guinney, Justin
    Abdallah, Kald
    Norman, Thea C.
    Bot, Brian
    Costello, James
    Shen, Liji
    Wang, Tao
    Xie, Yang
    Stolovitzky, Gustavo A.
    JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (15)
  • [49] Scenic travel route planning based on multi-sourced and heterogeneous crowd-sourced data
    Chen X.
    Chen C.
    Liu K.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2016, 50 (06): : 1183 - 1188
  • [50] By cyclists, for cyclists: Road grade and elevation estimation from crowd-sourced fitness application data
    Berjisian, Elmira
    Bigazzi, Alexander
    Barkh, Hamed
    PLOS ONE, 2023, 18 (12):