Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges

被引:16
|
作者
Ellrott, Kyle [1 ]
Buchanan, Alex [1 ]
Creason, Allison [1 ]
Mason, Michael [2 ]
Schaffter, Thomas [3 ]
Hoff, Bruce [2 ]
Eddy, James [2 ]
Chilton, John M. [4 ]
Yu, Thomas [2 ]
Stuart, Joshua M. [5 ]
Saez-Rodriguez, Julio [6 ,7 ,8 ]
Stolovitzky, Gustavo [3 ]
Boutros, Paul C. [9 ,10 ,11 ,12 ,13 ,14 ,15 ]
Guinney, Justin [2 ,16 ]
机构
[1] Oregon Hlth & Sci Univ, Biomed Engn, Portland, OR 97239 USA
[2] Sage Bionetworks, Seattle, WA 98121 USA
[3] IBM Res, Yorktown Hts, NY USA
[4] Penn State Univ, Dept Biochem & Mol Biol, State Coll, PA USA
[5] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[6] Heidelberg Univ, Fac Med, Inst Computat Biomed, Heidelberg, Germany
[7] Heidelberg Univ Hosp, Bioquant, Heidelberg, Germany
[8] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed, Aachen, Germany
[9] Ontario Inst Canc Res, Toronto, ON, Canada
[10] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[11] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON, Canada
[12] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[13] Univ Calif Los Angeles, Dept Urol, Los Angeles, CA USA
[14] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
[15] Univ Calif Los Angeles, Inst Precis Hlth, Los Angeles, CA USA
[16] Univ Washington, Biomed Informat & Med Educ, Seattle, WA 98195 USA
关键词
EXPRESSION;
D O I
10.1186/s13059-019-1794-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Challenges are achieving broad acceptance for addressing many biomedical questions and enabling tool assessment. But ensuring that the methods evaluated are reproducible and reusable is complicated by the diversity of software architectures, input and output file formats, and computing environments. To mitigate these problems, some challenges have leveraged new virtualization and compute methods, requiring participants to submit cloud-ready software packages. We review recent data challenges with innovative approaches to model reproducibility and data sharing, and outline key lessons for improving quantitative biomedical data analysis through crowd-sourced benchmarking challenges.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Gluten Contamination of Restaurant Food: Analysis of Crowd-Sourced Data
    Lerner, Benjamin A.
    Lynn Phan Vo
    Yates, Shireen
    Rundle, Andrew G.
    Green, Peter H. R.
    Lebwohl, Benjamin
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2018, 113 : S658 - S658
  • [32] Road Grade Estimation Using Crowd-Sourced Smartphone Data
    Gupta, Abhishek
    Hu, Shaohan
    Zhong, Weida
    Sadek, Adel
    Su, Lu
    Qiao, Chunming
    2020 19TH ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2020), 2020, : 313 - 324
  • [33] Robust CNNs for detecting collapsed buildings with crowd-sourced data
    Gibson, Matthew J.
    Kaushik, Dhruv
    Sowmya, Arcot
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [34] Route Recommendations to Business Travelers Exploiting Crowd-Sourced Data
    Collerton, Thomas
    Marrella, Andrea
    Mecella, Massimo
    Catarci, Tiziana
    MOBILE WEB AND INTELLIGENT INFORMATION SYSTEMS, MOBIWIS 2017, 2017, 10486 : 3 - 17
  • [35] Detecting Label Errors in Crowd-Sourced Smartphone Sensor Data
    Bo, Xiao
    Poellabauer, Christian
    O'Brien, Megan K.
    Mummidisetty, Chaithanya Krishna
    Jayaraman, Arun
    3RD INTERNATIONAL WORKSHOP ON SOCIAL SENSING (SOCIALSENS 2018), 2018, : 20 - 25
  • [36] On the Benefits and Challenges of Crowd-Sourced Network Performance Measurements for IoT Scenarios
    Lars Møller Mikkelsen
    Tatiana Kozlova Madsen
    Hans-Peter Schwefel
    Wireless Personal Communications, 2020, 110 : 1551 - 1566
  • [37] Collecting Weighted Coercions from Crowd-Sourced Lexical Data for Compositional Semantic Analysis
    Lafourcade, Mathieu
    Mery, Bruno
    Mirzapour, Mehdi
    Moot, Richard
    Retore, Christian
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2017), 2018, 10838 : 214 - 230
  • [38] AccentSpeech: Learning Accent from Crowd-sourced Data for Target Speaker TTS with Accents
    Zhang, Yongmao
    Wang, Zhichao
    Yang, Peiji
    Sun, Hongshen
    Wang, Zhisheng
    Xie, Lei
    2022 13TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2022, : 76 - 80
  • [39] A Map Inference Approach Using Signal Processing from Crowd-sourced GPS Data
    He, Eric
    Bai, Fan
    Hay, Curtis
    Chen, Jinzhu
    Bhagavatula, Vijayakumar
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2021, 7 (02)
  • [40] MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data
    Philipp, Damian
    Baier, Patrick
    Dibak, Christoph
    Duerr, Frank
    Rothermel, Kurt
    Becker, Susanne
    Peter, Michael
    Fritsch, Dieter
    2014 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2014, : 139 - 147