Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges

被引:16
|
作者
Ellrott, Kyle [1 ]
Buchanan, Alex [1 ]
Creason, Allison [1 ]
Mason, Michael [2 ]
Schaffter, Thomas [3 ]
Hoff, Bruce [2 ]
Eddy, James [2 ]
Chilton, John M. [4 ]
Yu, Thomas [2 ]
Stuart, Joshua M. [5 ]
Saez-Rodriguez, Julio [6 ,7 ,8 ]
Stolovitzky, Gustavo [3 ]
Boutros, Paul C. [9 ,10 ,11 ,12 ,13 ,14 ,15 ]
Guinney, Justin [2 ,16 ]
机构
[1] Oregon Hlth & Sci Univ, Biomed Engn, Portland, OR 97239 USA
[2] Sage Bionetworks, Seattle, WA 98121 USA
[3] IBM Res, Yorktown Hts, NY USA
[4] Penn State Univ, Dept Biochem & Mol Biol, State Coll, PA USA
[5] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[6] Heidelberg Univ, Fac Med, Inst Computat Biomed, Heidelberg, Germany
[7] Heidelberg Univ Hosp, Bioquant, Heidelberg, Germany
[8] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed, Aachen, Germany
[9] Ontario Inst Canc Res, Toronto, ON, Canada
[10] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[11] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON, Canada
[12] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[13] Univ Calif Los Angeles, Dept Urol, Los Angeles, CA USA
[14] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
[15] Univ Calif Los Angeles, Inst Precis Hlth, Los Angeles, CA USA
[16] Univ Washington, Biomed Informat & Med Educ, Seattle, WA 98195 USA
关键词
EXPRESSION;
D O I
10.1186/s13059-019-1794-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Challenges are achieving broad acceptance for addressing many biomedical questions and enabling tool assessment. But ensuring that the methods evaluated are reproducible and reusable is complicated by the diversity of software architectures, input and output file formats, and computing environments. To mitigate these problems, some challenges have leveraged new virtualization and compute methods, requiring participants to submit cloud-ready software packages. We review recent data challenges with innovative approaches to model reproducibility and data sharing, and outline key lessons for improving quantitative biomedical data analysis through crowd-sourced benchmarking challenges.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Framework for Crowd-Sourced Exercise Data Collection and Processing
    Khasawneh, Natheer
    Schulte, Christoph
    Fraiwan, Mohammad
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 313 - 317
  • [22] On the Impact of Noises in Crowd-Sourced Data for Speech Translation
    Ouyang, Siqi
    Ye, Rong
    Li, Lei
    PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE TRANSLATION (IWSLT 2022), 2022, : 92 - 97
  • [23] A Method for Matching Crowd-sourced and Authoritative Geospatial Data
    Du, Heshan
    Alechina, Natasha
    Jackson, Michael
    Hart, Glen
    TRANSACTIONS IN GIS, 2017, 21 (02) : 406 - 427
  • [24] Special issue on structured and crowd-sourced data on the Web
    Brambilla, Marco
    Ceri, Stefano
    Halevy, Alon
    VLDB JOURNAL, 2013, 22 (05): : 587 - 588
  • [25] Learning of Performance Measures from Crowd-Sourced Data with Application to Ranking of Investments
    Harris, Greg
    Panangadan, Anand
    Prasanna, Viktor K.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 538 - 549
  • [26] Player Interaction with Procedurally Generated Game Play from Crowd-Sourced data
    Arnab, Sylvester
    Klopfenstein, Lorenz Cuno
    Lewis, Mark
    Delpriori, Saverio
    Bogliolo, Alessandro
    Clarke, Samantha
    CHI PLAY'19: EXTENDED ABSTRACTS OF THE ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY, 2019, : 333 - 339
  • [27] On the Benefits and Challenges of Crowd-Sourced Network Performance Measurements for IoT Scenarios
    Mikkelsen, Lars Moller
    Madsen, Tatiana Kozlova
    Schwefel, Hans-Peter
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 110 (03) : 1551 - 1566
  • [28] A Crowd-Sourced Data Based Analytical Framework for Urban Planning
    Li Dong
    Long Ying
    China City Planning Review, 2015, 24 (01) : 49 - 57
  • [29] The price elasticity of marijuana demand: evidence from crowd-sourced transaction data
    Adam J. Davis
    Karl R. Geisler
    Mark W. Nichols
    Empirical Economics, 2016, 50 : 1171 - 1192
  • [30] The price elasticity of marijuana demand: evidence from crowd-sourced transaction data
    Davis, Adam J.
    Geisler, Karl R.
    Nichols, Mark W.
    EMPIRICAL ECONOMICS, 2016, 50 (04) : 1171 - 1192