A posteriori error estimates of stabilized finite volume method for the Stokes equations

被引:4
|
作者
Zhang, Tong [1 ,3 ]
Mu, Lin [2 ]
Yuan, JinYun [3 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[3] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
关键词
a posteriori error estimates; stabilized finite volume method; Stokes equations; dual argument; ELEMENT-METHOD; APPROXIMATIONS;
D O I
10.1002/mma.3457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the residual-type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H-1 norm and pressure in L-2 norm are derived. Furthermore, a global upper bound of u - u(h) in L-2-norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 50 条
  • [21] Anisotropic metrics for finite element meshes using a posteriori error estimates: Poisson and Stokes equations
    Kuate, Raphael
    ENGINEERING WITH COMPUTERS, 2013, 29 (04) : 497 - 505
  • [22] A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
    Armentano, Maria G.
    Moreno, Veronica
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 269 : 132 - 149
  • [23] A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations
    Raytcho Lazarov
    Stanimire Tomov
    Computational Geosciences, 2002, 6 : 483 - 503
  • [24] Robust a posteriori error estimates for stabilized finite element methods
    Tobiska, L.
    Verfuerth, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1652 - 1671
  • [25] Error estimates of finite volume method for Stokes optimal control problem
    Lin Lan
    Ri-hui Chen
    Xiao-dong Wang
    Chen-xia Ma
    Hao-nan Fu
    Journal of Inequalities and Applications, 2021
  • [26] Error estimates of finite volume method for Stokes optimal control problem
    Lan, Lin
    Chen, Ri-hui
    Wang, Xiao-dong
    Ma, Chen-xia
    Fu, Hao-nan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [27] A stabilized finite volume method for the stationary Navier-Stokes equations
    Sheng, Ying
    Zhang, Tie
    Jiang, Zhong-Zhong
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 363 - 372
  • [28] A STABILIZED EQUAL-ORDER FINITE VOLUME METHOD FOR THE STOKES EQUATIONS
    Tian, Wanfu
    Song, Liqiu
    Li, Yonghai
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (06) : 615 - 628
  • [29] Superconvergence and a posteriori error estimates for boundary control governed by Stokes equations
    Liu, Hui-po
    Yan, Ning-ning
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 343 - 356
  • [30] A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATION OF UNSTEADY INCOMPRESSIBLE STOCHASTIC NAVIER-STOKES EQUATIONS
    Yang, Xiaoyuan
    Duan, Yuanyuan
    Guo, Yuhua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1579 - 1600