Wigner surmise for Hermitian and non-Hermitian chiral random matrices

被引:18
|
作者
Akemann, G. [1 ,2 ]
Bittner, E. [3 ,4 ]
Phillips, M. J. [1 ,2 ]
Shifrin, L. [1 ,2 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Brunel Univ, BURSt Res Ctr, Uxbridge UB8 3PH, Middx, England
[3] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany
[4] Univ Leipzig, Ctr Theoret Sci NTZ, D-04009 Leipzig, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
chemical potential; chiral symmetries; eigenvalues and eigenfunctions; gauge field theory; lattice field theory; matrix algebra; quantum chromodynamics; random processes; QCD DIRAC OPERATOR; DISTRIBUTIONS; SPECTRUM;
D O I
10.1103/PhysRevE.80.065201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large-N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eigenvalues in the orthogonal and symplectic classes and at intermediate non-Hermiticity for the unitary and symplectic classes. Such individual Dirac eigenvalue distributions are a useful tool in lattice gauge theory, and we illustrate this by showing that our results can describe data from two-color quantum chromodynamics simulations with chemical potential in the symplectic class.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] On delocalization of eigenvectors of random non-Hermitian matrices
    Lytova, Anna
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 465 - 524
  • [12] On delocalization of eigenvectors of random non-Hermitian matrices
    Anna Lytova
    Konstantin Tikhomirov
    Probability Theory and Related Fields, 2020, 177 : 465 - 524
  • [13] Universality classes of non-Hermitian random matrices
    Hamazaki, Ryusuke
    Kawabata, Kohei
    Kura, Naoto
    Ueda, Masahito
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [14] New applications of non-Hermitian random matrices
    Zabrodin, A
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S851 - S861
  • [15] Edge universality for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2021, 179 : 1 - 28
  • [16] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [17] Local laws for non-Hermitian random matrices
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    Doklady Mathematics, 2017, 96 : 558 - 560
  • [18] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [19] Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices
    Ma, Yutao
    Wang, Siyu
    FORUM MATHEMATICUM, 2025, 37 (03) : 717 - 746
  • [20] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364