Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Capacity Estimation and Box-Cox Transformation

被引:26
|
作者
Xue, Qiao [1 ]
Shen, Shiquan [1 ]
Li, Guang [2 ]
Zhang, Yuanjian [3 ]
Chen, Zheng [1 ,2 ]
Liu, Yonggang [4 ,5 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[3] Queens Univ Belfast, Sir William Wright Technol Ctr, Belfast BT9 5BS, Antrim, North Ireland
[4] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[5] Chongqing Univ, Sch Automot Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 欧盟地平线“2020”;
关键词
Lithium-ion battery; remaining useful life; random forest regression; Box-Cox transformation; ridge regression; Monte Carlo simulation; MODEL; PROGNOSTICS; HEALTH;
D O I
10.1109/TVT.2020.3039553
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remaining useful life (RUL) prediction of lithium-ion batteries plays an important role in intelligent battery management systems (BMSs). The current RUL prediction methods are mainly developed based on offline training, which are limited by sufficiency and reliability of available data. To address this problem, this paper presents a method for RUL prediction based on the capacity estimation and the Box-Cox transformation (BCT). Firstly, the effective aging features (AFs) are extracted from electrical and thermal characteristics of lithium-ion batteries and the variation in terms of the cyclic discharging voltage profiles. The random forest regression (RFR) is then employed to achieve dependable capacity estimation based on only one cell's degradation data for model training. Secondly, the BCT is exploited to transform the estimated capacity data and to construct a linear model between the transformed capacities and cycles. Next, the ridge regression algorithm (RRA) is adopted to identify the parameters of the linear model. Finally, the identified linear model based on the BCT is employed to predict the battery RUL, and the prediction uncertainties are investigated and the probability density function (PDF) is calculated through the Monte Carlo (MC) simulation. The experimental results demonstrate that the proposed method can not only estimate capacity with errors of less than 2%, but also accurately predict the battery RUL with the maximum error of 127 cycles and the maximum spans of 95% confidence of 37 cycles in the whole cycle life.
引用
收藏
页码:14765 / 14779
页数:15
相关论文
共 50 条
  • [41] Remaining Useful Life Estimation for Prognostics of Lithium-Ion Batteries Based on Recurrent Neural Network
    Catelani, Marcantonio
    Ciani, Lorenzo
    Fantacci, Romano
    Patrizi, Gabriele
    Picano, Benedetta
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [42] Remaining Useful Life Estimation of Lithium-Ion Batteries based on the Internal Resistance Growth Model
    Guha, Arijit
    Patra, Amit
    Vaisakh, K. V.
    2017 INDIAN CONTROL CONFERENCE (ICC), 2017, : 33 - 38
  • [43] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [44] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Xingjun Li
    Dan Yu
    Vilsen S?ren Byg
    Store Daniel Ioan
    Journal of Energy Chemistry , 2023, (07) : 103 - 121
  • [45] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [46] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Li, Xingjun
    Yu, Dan
    Byg, Vilsen Soren
    Ioan, Store Daniel
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 103 - 121
  • [47] Remaining useful life prediction for lithium-ion batteries based on an improved GWO–SVR algorithm
    Jin H.
    Hu Y.
    Ge H.
    Hao Z.
    Zeng Z.
    Tang Z.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 514 - 524
  • [48] Application of state of health estimation and remaining useful life prediction for lithium-ion batteries based on AT-CNN-BiLSTM
    Zhao, Feng-Ming
    Gao, De-Xin
    Cheng, Yuan-Ming
    Yang, Qing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [49] Remaining Useful Life Prediction of Lithium-Ion Battery With Adaptive Noise Estimation and Capacity Regeneration Detection
    Zhang, Jiusi
    Jiang, Yuchen
    Li, Xiang
    Luo, Hao
    Yin, Shen
    Kaynak, Okyay
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (02) : 632 - 643
  • [50] Remaining useful life prediction method for nonlinear degrading equipment based on Box-Cox transformation and random coefficient regression model
    Yang B.
    Zhang J.
    Li H.
    Si X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (11):