Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Capacity Estimation and Box-Cox Transformation

被引:26
|
作者
Xue, Qiao [1 ]
Shen, Shiquan [1 ]
Li, Guang [2 ]
Zhang, Yuanjian [3 ]
Chen, Zheng [1 ,2 ]
Liu, Yonggang [4 ,5 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[3] Queens Univ Belfast, Sir William Wright Technol Ctr, Belfast BT9 5BS, Antrim, North Ireland
[4] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[5] Chongqing Univ, Sch Automot Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 欧盟地平线“2020”;
关键词
Lithium-ion battery; remaining useful life; random forest regression; Box-Cox transformation; ridge regression; Monte Carlo simulation; MODEL; PROGNOSTICS; HEALTH;
D O I
10.1109/TVT.2020.3039553
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remaining useful life (RUL) prediction of lithium-ion batteries plays an important role in intelligent battery management systems (BMSs). The current RUL prediction methods are mainly developed based on offline training, which are limited by sufficiency and reliability of available data. To address this problem, this paper presents a method for RUL prediction based on the capacity estimation and the Box-Cox transformation (BCT). Firstly, the effective aging features (AFs) are extracted from electrical and thermal characteristics of lithium-ion batteries and the variation in terms of the cyclic discharging voltage profiles. The random forest regression (RFR) is then employed to achieve dependable capacity estimation based on only one cell's degradation data for model training. Secondly, the BCT is exploited to transform the estimated capacity data and to construct a linear model between the transformed capacities and cycles. Next, the ridge regression algorithm (RRA) is adopted to identify the parameters of the linear model. Finally, the identified linear model based on the BCT is employed to predict the battery RUL, and the prediction uncertainties are investigated and the probability density function (PDF) is calculated through the Monte Carlo (MC) simulation. The experimental results demonstrate that the proposed method can not only estimate capacity with errors of less than 2%, but also accurately predict the battery RUL with the maximum error of 127 cycles and the maximum spans of 95% confidence of 37 cycles in the whole cycle life.
引用
收藏
页码:14765 / 14779
页数:15
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
    Wu, Weili
    Lu, Shuangshuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [32] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
    Zhang, Lijun
    Mu, Zhongqiang
    Sun, Changyan
    IEEE ACCESS, 2018, 6 : 17729 - 17740
  • [33] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [34] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [35] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU
    Ding, Guorong
    Wang, Wenbo
    Zhu, Ting
    IEEE ACCESS, 2022, 10 : 89402 - 89413
  • [36] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)
  • [37] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [38] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [39] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [40] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291