Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Capacity Estimation and Box-Cox Transformation

被引:26
|
作者
Xue, Qiao [1 ]
Shen, Shiquan [1 ]
Li, Guang [2 ]
Zhang, Yuanjian [3 ]
Chen, Zheng [1 ,2 ]
Liu, Yonggang [4 ,5 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[3] Queens Univ Belfast, Sir William Wright Technol Ctr, Belfast BT9 5BS, Antrim, North Ireland
[4] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[5] Chongqing Univ, Sch Automot Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 欧盟地平线“2020”;
关键词
Lithium-ion battery; remaining useful life; random forest regression; Box-Cox transformation; ridge regression; Monte Carlo simulation; MODEL; PROGNOSTICS; HEALTH;
D O I
10.1109/TVT.2020.3039553
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remaining useful life (RUL) prediction of lithium-ion batteries plays an important role in intelligent battery management systems (BMSs). The current RUL prediction methods are mainly developed based on offline training, which are limited by sufficiency and reliability of available data. To address this problem, this paper presents a method for RUL prediction based on the capacity estimation and the Box-Cox transformation (BCT). Firstly, the effective aging features (AFs) are extracted from electrical and thermal characteristics of lithium-ion batteries and the variation in terms of the cyclic discharging voltage profiles. The random forest regression (RFR) is then employed to achieve dependable capacity estimation based on only one cell's degradation data for model training. Secondly, the BCT is exploited to transform the estimated capacity data and to construct a linear model between the transformed capacities and cycles. Next, the ridge regression algorithm (RRA) is adopted to identify the parameters of the linear model. Finally, the identified linear model based on the BCT is employed to predict the battery RUL, and the prediction uncertainties are investigated and the probability density function (PDF) is calculated through the Monte Carlo (MC) simulation. The experimental results demonstrate that the proposed method can not only estimate capacity with errors of less than 2%, but also accurately predict the battery RUL with the maximum error of 127 cycles and the maximum spans of 95% confidence of 37 cycles in the whole cycle life.
引用
收藏
页码:14765 / 14779
页数:15
相关论文
共 50 条
  • [21] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [22] Health Monitoring and Remaining Useful Life Estimation of Lithium-Ion Aeronautical Batteries
    Moreira Penna, Jose Affonso
    Nascimento, Cairo Lucio, Jr.
    Rodrigues, Leonardo Ramos
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [23] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [24] An interpretable online prediction method for remaining useful life of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Ye, Yifu
    Cai, Zhiduan
    Zhen, Aigang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Capacity and remaining useful life prediction for lithium-ion batteries based on sequence decomposition and a deep-learning network
    Wang, Zili
    Liu, Yonglu
    Wang, Fen
    Wang, Hui
    Su, Mei
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [26] State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN
    Lin, Qiongbin
    Xu, Zhifan
    Lin, Chih-Min
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 10919 - 10933
  • [27] Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer
    Zhou, Kaile
    Zhang, Zhiyue
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [28] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Support Vector Regression
    Xu J.
    Ni Y.
    Zhu C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (17): : 3693 - 3704
  • [29] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
    Tang, Shengjin
    Yu, Chuanqiang
    Wang, Xue
    Guo, Xiaosong
    Si, Xiaosheng
    ENERGIES, 2014, 7 (02): : 520 - 547
  • [30] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Deep Learning Model
    Chen, Chao
    Wei, Jie
    Li, Zhenhua
    PROCESSES, 2023, 11 (08)