Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms

被引:34
|
作者
Qian, Chao [1 ]
Yu, Yang [1 ]
Tang, Ke [2 ]
Yao, Xin [2 ]
Zhou, Zhi-Hua [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
Evolutionary algorithms; Submodular optimization; Multi-objective evolutionary algorithms; Running time analysis; Computational complexity; EXPECTED RUNTIMES; SEARCH; COMPLEXITY;
D O I
10.1016/j.artint.2019.06.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. During the past two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study their performance on general classes of combinatorial optimization problems. To the best of our knowledge, the only result towards this direction is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular functions with matroid constraints. The aim of this work is to contribute to this line of research. Considering that many combinatorial optimization problems involve non-monotone or non-submodular objective functions, we study the general problem classes, maximizing submodular functions with/without a size constraint and maximizing monotone approximately submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO-C can generally achieve good approximation guarantees in polynomial expected running time. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 50 条
  • [31] Maximizing Symmetric Submodular Functions
    Feldman, Moran
    ALGORITHMS - ESA 2015, 2015, 9294 : 521 - 532
  • [32] Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice
    Chen, Sheng-Min-Jie
    Du, Dong-Lei
    Yang, Wen-Guo
    Gao, Sui-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025, 13 (01) : 142 - 160
  • [33] Maximizing Symmetric Submodular Functions
    Feldman, Moran
    ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [34] Algorithms for Optimizing the Ratio of Monotone k-Submodular Functions
    Chan, Hau
    Loukides, Grigorios
    Su, Zhenghui
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 3 - 19
  • [35] Streaming Algorithms for Maximizing k-Submodular Functions with the Multi-knapsack Constraint
    Gong, Shu-Fang
    Liu, Bin
    Fang, Qi-Zhi
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [36] Algorithms for maximizing monotone submodular function minus modular function under noise
    Gong, Shufang
    Liu, Bin
    Geng, Mengxue
    Fang, Qizhi
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (04)
  • [37] Algorithms for maximizing monotone submodular function minus modular function under noise
    Shufang Gong
    Bin Liu
    Mengxue Geng
    Qizhi Fang
    Journal of Combinatorial Optimization, 2023, 45
  • [38] Greed is Still Good: Maximizing Monotone Submodular plus Supermodular (BP) Functions
    Bai, Wenruo
    Bilmes, Jeffrey A.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [39] Maximizing a class of submodular utility functions
    Shabbir Ahmed
    Alper Atamtürk
    Mathematical Programming, 2011, 128 : 149 - 169
  • [40] Maximizing a class of submodular utility functions
    Ahmed, Shabbir
    Atamtuerk, Alper
    MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) : 149 - 169