Maximizing a class of submodular utility functions

被引:0
|
作者
Shabbir Ahmed
Alper Atamtürk
机构
[1] Georgia Institute of Technology,School of Industrial and Systems Engineering
[2] University of California,Department of Industrial Engineering and Operations Research
来源
Mathematical Programming | 2011年 / 128卷
关键词
90C57; 91B16; 91B28; Expected utility maximization; Combinatorial auctions; Competitive facility location; Submodular function maximization; Polyhedra;
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite ground set N and a value vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a \in \mathbb{R}^N}$$\end{document}, we consider optimization problems involving maximization of a submodular set utility function of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h(S)= f \left(\sum_{i \in S} a_i \right ), S \subseteq N}$$\end{document}, where f is a strictly concave, increasing, differentiable function. This utility function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, for instance, in risk-averse capital budgeting under uncertainty, competitive facility location, and combinatorial auctions. These problems can be formulated as linear mixed 0-1 programs. However, the standard formulation of these problems using submodular inequalities is ineffective for their solution, except for very small instances. In this paper, we perform a polyhedral analysis of a relevant mixed-integer set and, by exploiting the structure of the utility function h, strengthen the standard submodular formulation significantly. We show the lifting problem of the submodular inequalities to be a submodular maximization problem with a special structure solvable by a greedy algorithm, which leads to an easily-computable strengthening by subadditive lifting of the inequalities. Computational experiments on expected utility maximization in capital budgeting show the effectiveness of the new formulation.
引用
收藏
页码:149 / 169
页数:20
相关论文
共 50 条
  • [1] Maximizing a class of submodular utility functions
    Ahmed, Shabbir
    Atamtuerk, Alper
    [J]. MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) : 149 - 169
  • [2] Maximizing a class of submodular utility functions with constraints
    Yu, Jiajin
    Ahmed, Shabbir
    [J]. MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 145 - 164
  • [3] Maximizing a class of submodular utility functions with constraints
    Jiajin Yu
    Shabbir Ahmed
    [J]. Mathematical Programming, 2017, 162 : 145 - 164
  • [4] Maximizing Submodular Functions under Submodular Constraints
    Padmanabhan, Madhavan R.
    Zhu, Yanhui
    Basu, Samik
    Pavan, A.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1618 - 1627
  • [5] Maximizing Symmetric Submodular Functions
    Feldman, Moran
    [J]. ALGORITHMS - ESA 2015, 2015, 9294 : 521 - 532
  • [6] Maximizing Symmetric Submodular Functions
    Feldman, Moran
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [7] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Lu, Cheng
    Yang, Wenguo
    Gao, Suixiang
    [J]. OPTIMIZATION LETTERS, 2023, 17 (07) : 1643 - 1667
  • [8] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    [J]. Optimization Letters, 2023, 17 : 1643 - 1667
  • [9] Maximizing Stochastic Monotone Submodular Functions
    Asadpour, Arash
    Nazerzadeh, Hamid
    [J]. MANAGEMENT SCIENCE, 2016, 62 (08) : 2374 - 2391
  • [10] Maximizing a Class of Utility Functions Over the Vertices of a Polytope
    Atamturk, Alper
    Gomez, Andres
    [J]. OPERATIONS RESEARCH, 2017, 65 (02) : 433 - 445