Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions

被引:0
|
作者
Lu, Cheng [1 ]
Yang, Wenguo [1 ]
Gao, Suixiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonsubmodular maximization; Difference of submodular functions; Sum of submodular and supermodular functions; Streaming algorithm; Curvature; APPROXIMATION;
D O I
10.1007/s11590-023-01979-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the problem of maximizing the Difference of two Submodular (DS) functions in the streaming model, where elements in the ground set arrive one at a time in an arbitrary order. We present one-pass streaming algorithms for both the unconstrained and cardinality-constrained problems. Our analysis shows that the algorithms we propose are able to produce solutions with provable approximation guarantees. To the best of our knowledge, this is the first theoretical guarantee for the DS maximization problem in the streaming model. In addition, we study the function maximization problem under a cardinality constraint, where the underlying objective function is a gamma-weakly DR-submodular function, in the streaming setting. We propose a one-pass streaming algorithm, which achieves an approximation ratio of gamma(1 + gamma) - epsilon . Since the sum of suBmodular and suPermodular (BP) functions can be regarded as a (1 - K-g)-weakly DR-submodular function, we obtain a ((1 - K-g)/(2 - K-g) - e)-approximation for the cardinality-constrained BP maximization, where K-g is the curvature of the corresponding supermodular function. Our results improve the previous best approximation bounds.
引用
收藏
页码:1643 / 1667
页数:25
相关论文
共 50 条
  • [1] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    [J]. Optimization Letters, 2023, 17 : 1643 - 1667
  • [2] Stochastic greedy algorithms for maximizing constrained submodular plus supermodular functions
    Ji, Sai
    Xu, Dachuan
    Li, Min
    Wang, Yishui
    Zhang, Dongmei
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [3] Maximizing Submodular plus Supermodular Functions Subject to a Fairness Constraint
    Zhang, Zhenning
    Meng, Kaiqiao
    Du, Donglei
    Zhou, Yang
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (01) : 46 - 55
  • [4] Streaming Algorithms for Maximizing Non-submodular Functions on the Integer Lattice
    Liu, Bin
    Chen, Zihan
    Wang, Huijuan
    Wu, Weili
    [J]. COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 3 - 14
  • [5] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    Yoshida, Yuichi
    [J]. ALGORITHMICA, 2020, 82 (04) : 1006 - 1032
  • [6] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    [J]. Algorithmica, 2020, 82 : 1006 - 1032
  • [7] Maximizing Submodular Functions under Submodular Constraints
    Padmanabhan, Madhavan R.
    Zhu, Yanhui
    Basu, Samik
    Pavan, A.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1618 - 1627
  • [8] A Note on Maximizing Regularized Submodular Functions Under Streaming
    Gong, Qinqin
    Meng, Kaiqiao
    Yang, Ruiqi
    Zhang, Zhenning
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (06) : 1023 - 1029
  • [9] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 438 - 451
  • [10] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    [J]. ALGORITHMICA, 2021, 83 (03) : 879 - 902