A Note on Maximizing Regularized Submodular Functions Under Streaming

被引:0
|
作者
Gong, Qinqin [1 ]
Meng, Kaiqiao [1 ]
Yang, Ruiqi [1 ]
Zhang, Zhenning [1 ]
机构
[1] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
submodular optimization; regular model; streaming algorithms; threshold technique; FUNCTION SUBJECT; MAXIMIZATION;
D O I
10.26599/TST.2022.9010068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent progress in maximizing submodular functions with a cardinality constraint through centralized and streaming modes has demonstrated a wide range of applications and also developed comprehensive theoretical guarantees. The submodularity was investigated to capture the diversity and representativeness of the utilities, and the monotonicity has the advantage of improving the coverage. Regularized submodular optimization models were developed in the latest studies (such as a house on fire), which aimed to sieve subsets with constraints to optimize regularized utilities. This study is motivated by the setting in which the input stream is partitioned into several disjoint parts, and each part has a limited size constraint. A first threshold-based bicriteria (1/3, 2/3)-approximation for the problem is provided.
引用
收藏
页码:1023 / 1029
页数:7
相关论文
共 50 条
  • [1] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    Yoshida, Yuichi
    [J]. ALGORITHMICA, 2020, 82 (04) : 1006 - 1032
  • [2] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    [J]. Algorithmica, 2020, 82 : 1006 - 1032
  • [3] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Lu, Cheng
    Yang, Wenguo
    Gao, Suixiang
    [J]. OPTIMIZATION LETTERS, 2023, 17 (07) : 1643 - 1667
  • [4] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    [J]. Optimization Letters, 2023, 17 : 1643 - 1667
  • [5] Maximizing Submodular Functions under Submodular Constraints
    Padmanabhan, Madhavan R.
    Zhu, Yanhui
    Basu, Samik
    Pavan, A.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1618 - 1627
  • [6] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 438 - 451
  • [7] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    [J]. Algorithmica, 2021, 83 : 879 - 902
  • [8] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    [J]. ALGORITHMICA, 2021, 83 (03) : 879 - 902
  • [9] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Pham, Canh, V
    Vu, Quang C.
    Ha, Dung K. T.
    Nguyen, Tai T.
    Le, Nguyen D.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 723 - 751
  • [10] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Canh V. Pham
    Quang C. Vu
    Dung K. T. Ha
    Tai T. Nguyen
    Nguyen D. Le
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 723 - 751