Neoclassical toroidal viscosity torque prediction via deep learning

被引:2
|
作者
Clement, M. D. [1 ]
Logan, N. C. [2 ]
Boyer, M. D. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
deep learning; neoclassical toroidal viscosity torque; machine learning; NTV torque; EQUILIBRIUM RECONSTRUCTION;
D O I
10.1088/1741-4326/ac3e83
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
GPECnet is a densely connected neural network that has been trained on GPEC data, to predict the plasma stability, neoclassical toroidal viscosity (NTV) torque, and optimized 3D coil current distributions for desired NTV torque profiles. Using NTV torque, driven by non-axisymmetric field perturbations in a tokamak, can be vital in optimizing pedestal performance by controlling the rotation profile in both the core, to ensure tearing stability, and the edge, to avoid edge localized modes (ELMs). The generalized perturbed equilibrium code (GPEC) software package can be used to calculate the plasma stability to 3D perturbations and the NTV torque profile generated by applied 3D magnetic fields. These calculations, however, involve complex integrations over space and energy distributions, which takes time to compute. Initially, GPECnet has been trained solely on data representative of the quiescent H-mode (QH) scenario, in which neutral beams are often balanced and toroidal rotation is low across the plasma profile. This work provides the foundation for active control of the rotation shear using a combination of beams and 3D fields for robust and high performance QH mode operation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Calculation of neoclassical toroidal viscosity with a particle simulation in the tokamak magnetic braking experiments
    Kim, K.
    Park, J. -K.
    Boozer, A. H.
    Menard, J. E.
    Gerhardt, S. P.
    Logan, N. C.
    Wang, Z. R.
    Kramer, G. J.
    Burrell, K. H.
    Garofalo, A. M.
    NUCLEAR FUSION, 2014, 54 (07)
  • [42] Neoclassical toroidal plasma viscosity in bounce-transit and drift resonance regimes in tokamaks
    Shaing, K. C.
    Garcia-Munoz, M.
    Viezzer, E.
    NUCLEAR FUSION, 2023, 63 (02)
  • [43] PARALLEL VISCOSITY-DRIVEN NEOCLASSICAL FLUXES IN THE BANANA REGIME IN NONSYMMETRIC TOROIDAL PLASMAS
    SHAING, KC
    HIRSHMAN, SP
    TOLLIVER, JS
    PHYSICS OF FLUIDS, 1986, 29 (08) : 2548 - 2555
  • [44] Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas
    Cole, A. J.
    Hegna, C. C.
    Callen, J. D.
    PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [45] A Monte-Carlo-Based Calculation of Neoclassical Flows and Viscosity for Nonaxisymmetric Toroidal Plasmas
    Matsuyama, A.
    Hanatani, K.
    Watanabe, K. Y.
    Nakajima, N.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (6-7) : 635 - 638
  • [46] Neoclassical Toroidal Viscosity Calculations in Tokamaks Using a δf Monte Carlo Simulation and Their Verifications
    Satake, S.
    Park, J-K.
    Sugama, H.
    Kanno, R.
    PHYSICAL REVIEW LETTERS, 2011, 107 (05)
  • [47] Effects of the applied magnetic fields with various toroidal phase differences on the neoclassical toroidal viscosity in JT-60SA
    Honda, M.
    Satake, S.
    Suzuki, Y.
    Matsunaga, G.
    Shinohara, K.
    Aiba, N.
    Yoshida, M.
    Ide, S.
    NUCLEAR FUSION, 2018, 58 (11)
  • [48] A smart model for prediction of viscosity of nanofluids using deep learning
    Changdar, Satyasaran
    Saha, Susmita
    De, Soumen
    SMART SCIENCE, 2020, 8 (04) : 242 - 256
  • [49] Video Frame Prediction via Deep Learning
    Yilmaz, M. Akin
    Tekalp, A. Murat
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [50] Crystal Structure Prediction via Deep Learning
    Ryan, Kevin
    Lengyel, Jeff
    Shatruk, Michael
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (32) : 10158 - 10168