Neoclassical toroidal viscosity torque prediction via deep learning

被引:2
|
作者
Clement, M. D. [1 ]
Logan, N. C. [2 ]
Boyer, M. D. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
deep learning; neoclassical toroidal viscosity torque; machine learning; NTV torque; EQUILIBRIUM RECONSTRUCTION;
D O I
10.1088/1741-4326/ac3e83
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
GPECnet is a densely connected neural network that has been trained on GPEC data, to predict the plasma stability, neoclassical toroidal viscosity (NTV) torque, and optimized 3D coil current distributions for desired NTV torque profiles. Using NTV torque, driven by non-axisymmetric field perturbations in a tokamak, can be vital in optimizing pedestal performance by controlling the rotation profile in both the core, to ensure tearing stability, and the edge, to avoid edge localized modes (ELMs). The generalized perturbed equilibrium code (GPEC) software package can be used to calculate the plasma stability to 3D perturbations and the NTV torque profile generated by applied 3D magnetic fields. These calculations, however, involve complex integrations over space and energy distributions, which takes time to compute. Initially, GPECnet has been trained solely on data representative of the quiescent H-mode (QH) scenario, in which neutral beams are often balanced and toroidal rotation is low across the plasma profile. This work provides the foundation for active control of the rotation shear using a combination of beams and 3D fields for robust and high performance QH mode operation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Theory for island induced neoclassical toroidal plasma viscosity in tokamaks
    Shaing, K. C.
    Tsai, T. H.
    Chu, M. S.
    Sabbagh, S. A.
    NUCLEAR FUSION, 2011, 51 (04)
  • [22] NEOCLASSICAL VISCOSITY EFFECTS ON RESISTIVE MAGNETOHYDRODYNAMIC MODES IN TOROIDAL GEOMETRY
    YANG, JG
    OH, YH
    CHOI, DI
    KIM, JY
    HORTON, W
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (03): : 659 - 671
  • [23] Neoclassical toroidal plasma viscosity in the superbanana plateau regime for tokamaks
    Shaing, K. C.
    Sabbagh, S. A.
    Chu, M. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (03)
  • [24] Effects of orbit squeezing on neoclassical toroidal plasma viscosity in tokamaks
    Shaing, K. C.
    Sabbagh, S. A.
    Chu, M. S.
    Becoulet, M.
    Cahyna, P.
    PHYSICS OF PLASMAS, 2008, 15 (08)
  • [25] Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry
    Logan, Nikolas C.
    Park, Jong-Kyu
    Kim, Kimin
    Wang, Zhirui
    Berkery, John W.
    PHYSICS OF PLASMAS, 2013, 20 (12)
  • [26] Neoclassical toroidal plasma viscosity in the low collisionality regime for tokamaks
    Shaing, K. C.
    Sabbagh, S. A.
    Chu, M. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (03)
  • [27] Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks
    Park, Jong-Kyu
    Logan, Nikolas C.
    PHYSICS OF PLASMAS, 2017, 24 (03)
  • [28] Effects of neoclassical toroidal viscosity induced by the intrinsic error fields and toroidal field ripple on the toroidal rotation in tokamaks
    Lee, H. H.
    Seol, J.
    Ko, W. H.
    Terzolo, L.
    Aydemir, A. Y.
    In, Y.
    Ghim, Y. -C.
    Lee, S. G.
    PHYSICS OF PLASMAS, 2016, 23 (08)
  • [29] Experimental analyses and predictive simulations of toroidal rotation driven by the neoclassical toroidal viscosity in rippled tokamaks
    Honda, M.
    Satake, S.
    Suzuki, Y.
    Matsunaga, G.
    Shinohara, K.
    Yoshida, M.
    Matsuyama, A.
    Ide, S.
    Urano, H.
    NUCLEAR FUSION, 2014, 54 (11)
  • [30] Numerical validation of the refined formula of neoclassical toroidal plasma viscosity in tokamaks
    Sun, Y.
    Shaing, K. C.
    Liang, Y.
    Shen, B.
    Wan, B.
    NUCLEAR FUSION, 2013, 53 (07)