Neoclassical toroidal viscosity torque prediction via deep learning

被引:2
|
作者
Clement, M. D. [1 ]
Logan, N. C. [2 ]
Boyer, M. D. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
deep learning; neoclassical toroidal viscosity torque; machine learning; NTV torque; EQUILIBRIUM RECONSTRUCTION;
D O I
10.1088/1741-4326/ac3e83
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
GPECnet is a densely connected neural network that has been trained on GPEC data, to predict the plasma stability, neoclassical toroidal viscosity (NTV) torque, and optimized 3D coil current distributions for desired NTV torque profiles. Using NTV torque, driven by non-axisymmetric field perturbations in a tokamak, can be vital in optimizing pedestal performance by controlling the rotation profile in both the core, to ensure tearing stability, and the edge, to avoid edge localized modes (ELMs). The generalized perturbed equilibrium code (GPEC) software package can be used to calculate the plasma stability to 3D perturbations and the NTV torque profile generated by applied 3D magnetic fields. These calculations, however, involve complex integrations over space and energy distributions, which takes time to compute. Initially, GPECnet has been trained solely on data representative of the quiescent H-mode (QH) scenario, in which neutral beams are often balanced and toroidal rotation is low across the plasma profile. This work provides the foundation for active control of the rotation shear using a combination of beams and 3D fields for robust and high performance QH mode operation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Dependence of neoclassical toroidal viscosity on the poloidal spectrum of applied nonaxisymmetric fields
    Logan, N. C.
    Park, J. -K.
    Paz-Soldan, C.
    Lanctot, M. J.
    Smith, S. P.
    Burrell, K. H.
    NUCLEAR FUSION, 2016, 56 (03)
  • [32] Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks
    Shaing, K. C.
    Cahyna, P.
    Becoulet, M.
    Park, J. -K.
    Sabbagh, S. A.
    Chu, M. S.
    PHYSICS OF PLASMAS, 2008, 15 (08)
  • [34] Intrinsic plasma rotation determined by neoclassical toroidal plasma viscosity in tokamaks
    Sun, Y.
    Shaing, K. C.
    Liang, Y.
    Casper, T.
    Loarte, A.
    Shen, B.
    Wan, B.
    NUCLEAR FUSION, 2013, 53 (09)
  • [35] Braking due to non-resonant magnetic perturbations and comparison with neoclassical toroidal viscosity torque in EXTRAP T2R
    Frassinetti, L.
    Sun, Y.
    Fridstrom, R.
    Menmuir, S.
    Olofsson, K. E. J.
    Brunsell, P. R.
    Khan, M. W. M.
    Liang, Y.
    Drake, J. R.
    NUCLEAR FUSION, 2015, 55 (11)
  • [36] Neoclassical toroidal torque generation by auxiliary heating in non-axisymmetric tori
    Lazzaro, E.
    Nowak, S.
    Sauter, O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (12)
  • [37] Prediction of toroidal dipole resonance in dielectric metasurface by deep learning
    Yu, Yangyang
    You, Shaojun
    Zhang, Ying
    Wang, Lulu
    Duan, Hong
    He, Haoxuan
    Wang, Yiyuan
    Luo, Shengyun
    Xu, Jing
    Huang, Jing
    Zhou, Chaobiao
    APPLIED PHYSICS LETTERS, 2025, 126 (07)
  • [38] Numerical Verification of Bounce-Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks
    Kim, Kimin
    Park, Jong-Kyu
    Boozer, Allen H.
    PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [39] Neoclassical toroidal plasma viscosity in the vicinity of the magnetic axis in tokamaks with broken symmetry
    Shaing, K. C.
    Lee, H.
    Seol, J.
    Aydemir, A. Y.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [40] How to calculate the neoclassical viscosity, diffusion, and current coefficients in general toroidal plasmas
    Sugama, H
    Nishimura, S
    PHYSICS OF PLASMAS, 2002, 9 (11) : 4637 - 4653