On the order of Schur multiplier of non-abelian p-groups

被引:34
|
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ Basic Sci, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; Non-abelian p-groups; FINITE-GROUP; INEQUALITIES;
D O I
10.1016/j.jalgebra.2009.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n), Green proved that M(G). its Schur multiplier is of order at most p(1/2n(n-1)). Later Berkovich showed that the equality holds if and only if G is elementary abelian of order p(n). In the present paper, we prove that if G is a non-abelian p-group of order p(n) with derived subgroup of order p(k), then vertical bar M(G)vertical bar <= p(1/2(n+k-2)(n-k-1)+1). In particular, vertical bar M(G)vertical bar <= p(1/2(n-1)(n-2)+1), and the equality holds in this last bound if and only if G = H x Z, where H is extra special of order p(3) and exponent p, and Z is an elementary abelian p-group. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4479 / 4482
页数:4
相关论文
共 50 条
  • [41] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    An LiJian
    Li Lili
    Qu HaiPeng
    Zhang QinHai
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 737 - 753
  • [42] On the Structure of the Augmentation Quotient Group for Some Non-abelian p-groups
    ZHAO HUI-FANG
    NAN JI-ZHU
    Du Xian-kun
    Communications in Mathematical Research, 2017, 33 (04) : 289 - 303
  • [43] The exponent of the non-abelian tensor square and related constructions of p-groups
    Bastos, Raimundo
    de Melo, Emerson
    Goncalves, Nathalia
    Monetta, Carmine
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) : 1264 - 1278
  • [44] The Non-abelian Tensor Square and Schur Multiplier of Groups of Orders p2q and p2qr
    Jafari, S. H.
    Niroomand, P.
    Erfanian, A.
    ALGEBRA COLLOQUIUM, 2012, 19 : 1083 - 1088
  • [45] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    LiJian An
    LiLi Li
    HaiPeng Qu
    QinHai Zhang
    Science China Mathematics, 2014, 57 : 737 - 753
  • [46] Finite p-groups with a minimal non-abelian subgroup of index p (I)
    Qu, Haipeng
    Yang, Sushan
    Xu, Mingyao
    An, Lijian
    JOURNAL OF ALGEBRA, 2012, 358 : 178 - 188
  • [47] Finite p-groups with a minimal non-abelian subgroup of index p (V)
    Qu, Haipeng
    Zhao, Liping
    Gao, Jin
    An, Lijian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)
  • [48] On the number of subgroups of non-metacyclic minimal non-abelian p-groups
    Kumar, Pradeep
    Jain, Vivek Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)
  • [49] Finite p-groups with a minimal non-abelian subgroup of index p (IV)
    An, Lijian
    Hu, Ruifang
    Zhang, Qinhai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (02)
  • [50] Commutativity Pattern of Finite Non-Abelian p-Groups Determine Their Orders
    Abdollahi, A.
    Akbari, S.
    Dorbidi, H.
    Shahverdi, H.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (02) : 451 - 461