On the order of Schur multiplier of non-abelian p-groups

被引:34
|
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ Basic Sci, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; Non-abelian p-groups; FINITE-GROUP; INEQUALITIES;
D O I
10.1016/j.jalgebra.2009.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n), Green proved that M(G). its Schur multiplier is of order at most p(1/2n(n-1)). Later Berkovich showed that the equality holds if and only if G is elementary abelian of order p(n). In the present paper, we prove that if G is a non-abelian p-group of order p(n) with derived subgroup of order p(k), then vertical bar M(G)vertical bar <= p(1/2(n+k-2)(n-k-1)+1). In particular, vertical bar M(G)vertical bar <= p(1/2(n-1)(n-2)+1), and the equality holds in this last bound if and only if G = H x Z, where H is extra special of order p(3) and exponent p, and Z is an elementary abelian p-group. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4479 / 4482
页数:4
相关论文
共 50 条
  • [21] Finite p-Groups Whose Subgroups of Given Order Are Isomorphic and Minimal Non-abelian
    Zhang, Qinhai
    ALGEBRA COLLOQUIUM, 2019, 26 (01) : 1 - 8
  • [22] Non-Abelian tensor square and related constructions of p-groups
    Bastos, R.
    de Melo, E.
    Goncalves, N.
    Nunes, R.
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 481 - 490
  • [24] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅲ)
    QU HaiPeng
    XU MingYao
    AN LiJian
    ScienceChina(Mathematics), 2015, 58 (04) : 763 - 780
  • [25] CHARACTERIZATION OF FINITE p-GROUPS BY THEIR NON-ABELIAN TENSOR SQUARE
    Jafari, S. H.
    Saeedi, F.
    Khamseh, E.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) : 1954 - 1963
  • [26] Non-Abelian tensor square and related constructions of p-groups
    R. Bastos
    E. de Melo
    N. Gonçalves
    R. Nunes
    Archiv der Mathematik, 2020, 114 : 481 - 490
  • [27] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅱ)
    AN LiJian
    LI LiLi
    QU HaiPeng
    ZHANG QinHai
    Science China(Mathematics), 2014, 57 (04) : 737 - 753
  • [28] A NECESSARY CONDITION FOR NON-ABELIAN FINITE p-GROUPS WITH SECOND CENTRE OF ORDER p2
    Attar, M. Shabani
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2011, 42 (03): : 183 - 186
  • [29] On Schur p-Groups of odd order
    Ryabov, Grigory
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [30] ON THE EXPONENT OF THE SCHUR MULTIPLIER OF A PAIR OF FINITE p-GROUPS
    Mohammadzadeh, Fahimeh
    Hokmabadi, Azam
    Mashayekhy, Behrooz
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (08)