Finite p-groups with a minimal non-abelian subgroup of index p (I)

被引:14
|
作者
Qu, Haipeng [1 ]
Yang, Sushan [1 ]
Xu, Mingyao [1 ]
An, Lijian [1 ]
机构
[1] Shanxi Normal Univ, Dept Math, Linfen 041004, Shanxi, Peoples R China
关键词
Minimal non-abelian p-groups; Metabelian p-groups; Regular p-groups; p-Groups of maximal class;
D O I
10.1016/j.jalgebra.2012.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime p, we classify finite p-groups with a unique minimal non-abelian subgroup of index p. In fact, such groups have a maximal quotient which is a 3-group of maximal class. This paper is a part of classification of finite p-groups with a minimal non-abelian subgroup of index p, and partly solves a problem proposed by Berkovich. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 188
页数:11
相关论文
共 50 条
  • [1] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅲ)
    QU HaiPeng
    XU MingYao
    AN LiJian
    ScienceChina(Mathematics), 2015, 58 (04) : 763 - 780
  • [2] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅱ)
    AN LiJian
    LI LiLi
    QU HaiPeng
    ZHANG QinHai
    Science China(Mathematics), 2014, 57 (04) : 737 - 753
  • [3] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    HaiPeng Qu
    MingYao Xu
    LiJian An
    Science China Mathematics, 2015, 58 : 763 - 780
  • [4] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    LiJian An
    LiLi Li
    HaiPeng Qu
    QinHai Zhang
    Science China Mathematics, 2014, 57 : 737 - 753
  • [5] Finite p-groups with a minimal non-abelian subgroup of index p (V)
    Qu, Haipeng
    Zhao, Liping
    Gao, Jin
    An, Lijian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)
  • [6] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    Qu HaiPeng
    Xu MingYao
    An LiJian
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 763 - 780
  • [7] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    An LiJian
    Li Lili
    Qu HaiPeng
    Zhang QinHai
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 737 - 753
  • [8] Finite p-groups with a minimal non-abelian subgroup of index p (IV)
    An, Lijian
    Hu, Ruifang
    Zhang, Qinhai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (02)
  • [9] On minimal non-abelian subgroups in finite p-groups
    Janko, Zvonimir
    JOURNAL OF GROUP THEORY, 2009, 12 (02) : 289 - 303
  • [10] Embeddings of minimal non-abelian p-groups
    Abbaspour, Mohammad Hassan
    Behravesh, Houshang
    Ghaffarzadeh, Ghodrat
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 658 - 661