Finite p-groups with a minimal non-abelian subgroup of index p (I)

被引:14
|
作者
Qu, Haipeng [1 ]
Yang, Sushan [1 ]
Xu, Mingyao [1 ]
An, Lijian [1 ]
机构
[1] Shanxi Normal Univ, Dept Math, Linfen 041004, Shanxi, Peoples R China
关键词
Minimal non-abelian p-groups; Metabelian p-groups; Regular p-groups; p-Groups of maximal class;
D O I
10.1016/j.jalgebra.2012.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime p, we classify finite p-groups with a unique minimal non-abelian subgroup of index p. In fact, such groups have a maximal quotient which is a 3-group of maximal class. This paper is a part of classification of finite p-groups with a minimal non-abelian subgroup of index p, and partly solves a problem proposed by Berkovich. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 188
页数:11
相关论文
共 50 条
  • [41] A necessary condition for non-abelian finite p-groups with second centre of order p2
    M. Shabani Attar
    Indian Journal of Pure and Applied Mathematics, 2011, 42 : 183 - 186
  • [42] Non-Abelian tensor square and related constructions of p-groups
    Bastos, R.
    de Melo, E.
    Goncalves, N.
    Nunes, R.
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 481 - 490
  • [43] On finite p-groups that are the product of a subgroup of class two and an abelian subgroup of order p3
    McCann, Brendan
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 1 - 10
  • [44] Reduced fusion systems over p-groups with abelian subgroup of index p: III
    Oliver, Bob
    Ruiz, Albert
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) : 1187 - 1239
  • [45] Non-Abelian tensor square and related constructions of p-groups
    R. Bastos
    E. de Melo
    N. Gonçalves
    R. Nunes
    Archiv der Mathematik, 2020, 114 : 481 - 490
  • [46] On finite groups in which every non-abelian subgroup is a TI-subgroup or has p'-order
    Ren, Huixuan
    Shi, Jiangtao
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 225 - 231
  • [47] Finite p-Groups all ofWhose Subgroups of Index p(3) are Abelian
    Zhang, Qinhai
    Zhao, Libo
    Li, Miaomiao
    Shen, Yiqun
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2015, 3 (01) : 69 - 162
  • [48] PROJECTIVITIES IN FINITE ABELIAN P-GROUPS
    WEHRHAHN, KH
    MATHEMATISCHE ZEITSCHRIFT, 1971, 123 (03) : 231 - &
  • [49] Coleman Outer Automorphisms of Finite Groups with a Non-Abelian Minimal Normal Subgroup
    Wang, W.
    Hai, J. K.
    He, W. P.
    MANUFACTURING, DESIGN SCIENCE AND INFORMATION ENGINEERING, VOLS I AND II, 2015, : 1285 - 1289
  • [50] ABELIAN SUBGROUPS OF FINITE P-GROUPS
    DANCS, SC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 169 (NJUL) : 489 - &