On minimal non-abelian subgroups in finite p-groups

被引:3
|
作者
Janko, Zvonimir [1 ]
机构
[1] Univ Heidelberg, Math Inst, D-69120 Heidelberg, Germany
关键词
2-GROUPS;
D O I
10.1515/JGT.2008.078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the non-abelian finite p-groups G with C(G)(x) <= H for any minimal non-abelian subgroup H of G and each x is an element of H - Z(G) (Theorem 1.1). This solves Problem 757 of Berkovich [1]. We also classify the non-abelian finite p-groups G such that whenever A is a maximal subgroup of any minimal non-abelian subgroup H in G, then A is also a maximal abelian subgroup in G (Theorem 1.2), and this solves another problem of Berkovich [1]. Finally, we generalize a result of Blackburn [4] concerning finite p-groups in which the non-normal subgroups have non-trivial intersection (Theorem 1.3 and Corollary 1.4).
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [2] On the number of subgroups of non-metacyclic minimal non-abelian p-groups
    Kumar, Pradeep
    Jain, Vivek Kumar
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)
  • [3] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅲ)
    QU HaiPeng
    XU MingYao
    AN LiJian
    [J]. Science China Mathematics, 2015, 58 (04) : 763 - 780
  • [4] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅱ)
    AN LiJian
    LI LiLi
    QU HaiPeng
    ZHANG QinHai
    [J]. Science China Mathematics, 2014, 57 (04) : 737 - 753
  • [5] Embeddings of minimal non-abelian p-groups
    Abbaspour, Mohammad Hassan
    Behravesh, Houshang
    Ghaffarzadeh, Ghodrat
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 658 - 661
  • [6] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    HaiPeng Qu
    MingYao Xu
    LiJian An
    [J]. Science China Mathematics, 2015, 58 : 763 - 780
  • [7] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    Qu HaiPeng
    Xu MingYao
    An LiJian
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 763 - 780
  • [8] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    An LiJian
    Li Lili
    Qu HaiPeng
    Zhang QinHai
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 737 - 753
  • [9] Finite p-groups with a minimal non-abelian subgroup of index p (V)
    Qu, Haipeng
    Zhao, Liping
    Gao, Jin
    An, Lijian
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)
  • [10] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    LiJian An
    LiLi Li
    HaiPeng Qu
    QinHai Zhang
    [J]. Science China Mathematics, 2014, 57 : 737 - 753