Bayesian system identification via Markov chain Monte Carlo techniques

被引:70
|
作者
Ninness, Brett [1 ]
Henriksen, Soren [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
Parameter estimation; System identification; Bayesian methods; Maximum likelihood; FINITE-SAMPLE PROPERTIES; BOOTSTRAP; MODELS;
D O I
10.1016/j.automatica.2009.10.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The work here explores new numerical methods for supporting a Bayesian approach to parameter estimation of dynamic systems. This is primarily motivated by the goal of providing accurate quantification of estimation error that is valid for arbitrary, and hence even very short length data records. The main innovation is the employment of the Metropolis-Hastings algorithm to construct an ergodic Markov chain with invariant density equal to the required posterior density. Monte Carlo analysis of samples from this chain then provides a means for efficiently and accurately computing posteriors for model parameters and arbitrary functions of them. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [21] Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo
    Liu, Ying
    Li, Chunguang
    [J]. INFORMATION SCIENCES, 2016, 326 : 334 - 349
  • [22] Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo
    Jayawardhana, Bayu
    Kell, Douglas B.
    Rattray, Magnus
    [J]. BIOINFORMATICS, 2008, 24 (09) : 1191 - 1197
  • [23] BAYESIAN MODEL CHOICE VIA MARKOV-CHAIN MONTE-CARLO METHODS
    CARLIN, BP
    CHIB, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (03): : 473 - 484
  • [24] Convergence assessment techniques for Markov chain Monte Carlo
    Brooks, SP
    Roberts, GO
    [J]. STATISTICS AND COMPUTING, 1998, 8 (04) : 319 - 335
  • [25] Convergence assessment techniques for Markov chain Monte Carlo
    STEPHEN P. BROOKS
    GARETH O. ROBERTS
    [J]. Statistics and Computing, 1998, 8 : 319 - 335
  • [26] Zero variance Markov chain Monte Carlo for Bayesian estimators
    Antonietta Mira
    Reza Solgi
    Daniele Imparato
    [J]. Statistics and Computing, 2013, 23 : 653 - 662
  • [27] A Markov chain Monte Carlo algorithm for Bayesian policy search
    Aghaei, Vahid Tavakol
    Onat, Ahmet
    Yildirim, Sinan
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (01): : 438 - 455
  • [28] Adaptive Markov Chain Monte Carlo for Bayesian Variable Selection
    Ji, Chunlin
    Schmidler, Scott C.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 708 - 728
  • [29] A Bayesian Markov chain Monte Carlo solution of the bilinear problem
    Ochs, AF
    Stoyanova, RS
    Brown, TR
    Rooney, WD
    Springer, CS
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2001, 567 : 274 - 284
  • [30] Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques
    Smith, Tyler Jon
    Marshall, Lucy Amanda
    [J]. WATER RESOURCES RESEARCH, 2008, 44