Bayesian system identification via Markov chain Monte Carlo techniques

被引:70
|
作者
Ninness, Brett [1 ]
Henriksen, Soren [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
Parameter estimation; System identification; Bayesian methods; Maximum likelihood; FINITE-SAMPLE PROPERTIES; BOOTSTRAP; MODELS;
D O I
10.1016/j.automatica.2009.10.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The work here explores new numerical methods for supporting a Bayesian approach to parameter estimation of dynamic systems. This is primarily motivated by the goal of providing accurate quantification of estimation error that is valid for arbitrary, and hence even very short length data records. The main innovation is the employment of the Metropolis-Hastings algorithm to construct an ergodic Markov chain with invariant density equal to the required posterior density. Monte Carlo analysis of samples from this chain then provides a means for efficiently and accurately computing posteriors for model parameters and arbitrary functions of them. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [41] Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny
    Mossel, Elchanan
    Vigoda, Eric
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (04): : 2215 - 2234
  • [42] Bayesian cross-validation by parallel Markov chain Monte Carlo
    Cooper, Alex
    Vehtari, Aki
    Forbes, Catherine
    Simpson, Dan
    Kennedy, Lauren
    [J]. STATISTICS AND COMPUTING, 2024, 34 (04)
  • [43] Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics
    Lakner, Clemens
    Van Der Mark, Paul
    Huelsenbeck, John P.
    Larget, Bret
    Ronquist, Fredrik
    [J]. SYSTEMATIC BIOLOGY, 2008, 57 (01) : 86 - 103
  • [44] Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
    Howison, Mark
    Zapata, Felipe
    Edwards, Erika J.
    Dunn, Casey W.
    [J]. PLOS ONE, 2014, 9 (06):
  • [45] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    B Mathew
    A M Bauer
    P Koistinen
    T C Reetz
    J Léon
    M J Sillanpää
    [J]. Heredity, 2012, 109 : 235 - 245
  • [46] Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data
    de Pasquale, F.
    Del Gratta, C.
    Romani, G. L.
    [J]. NEUROIMAGE, 2008, 42 (01) : 99 - 111
  • [47] Bayesian face recognition using a Markov chain Monte Carlo method
    Matsui, Atsushi
    Clippingdale, Simon
    Uzawa, Fumiki
    Matsumoto, Takashi
    [J]. NHK Laboratories Note, 2004, (487):
  • [48] Bayesian object matching with hierarchical priors and Markov chain Monte Carlo
    Tamminen, T
    Lampinen, J
    [J]. BAYESIAN STATISTICS 7, 2003, : 691 - 700
  • [49] Bayesian internal dosimetry calculations using Markov Chain Monte Carlo
    Miller, G
    Martz, HF
    Little, TT
    Guilmette, R
    [J]. RADIATION PROTECTION DOSIMETRY, 2002, 98 (02) : 191 - 198
  • [50] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298