Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo

被引:3
|
作者
Liu, Ying [1 ]
Li, Chunguang [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian analysis; Complex-valued; Markov chain Monte Carlo; Parameter estimation; Metropolis-Hastings sampling; Differential evolution; MODEL; MCMC;
D O I
10.1016/j.ins.2015.08.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of parameter estimation of a specified model has a long history. In statistics, Bayesian analysis via Markov chain Monte Carlo (MCMC) sampling is an efficient way for parameter estimation. However, the existing MCMC sampling is only performed in the real parameter space. In some situation, complex-valued parametric modeling is more preferable as complex representation brings economies and insights that would not be achieved by real-valued representation. Therefore, to estimate complex-valued parameters, it is more convenient and elegant to perform the MCMC sampling in the complex parameter space. In this paper, firstly, based on the assumption that the observation signal is proper, two complex MCMC algorithms using the Metropolis-Hastings sampling and the differential evolution are proposed, in which the probability density functions (pdfs) in Bayesian estimation are characterized by the usual Hermitian covariance matrices. Secondly, to improve the performance for the case that the observation signal is improper, two augmented complex MCMC algorithms are developed, where the pdfs are computed by the augmented complex statistics. Both theoretical studies and numerical simulations are presented to show the effectiveness of the proposed algorithms in complex-valued parameter estimation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:334 / 349
页数:16
相关论文
共 50 条
  • [1] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [2] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [3] Estimation and inference via Bayesian simulation: An introduction to Markov Chain Monte Carlo
    Jackman, S
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2000, 44 (02) : 375 - 404
  • [4] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [5] Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo
    Moura, Carlos H. R.
    Viegas, Bruno M.
    Tavares, Maria R. M.
    Macedo, Emanuel N.
    Estumano, Diego C.
    Quaresma, Joao N. N.
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 890 - 901
  • [6] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [7] Bayesian Estimation for the Exponentiated Weibull Model via Markov Chain Monte Carlo Simulation
    Jaheen, Zeinhum F.
    Al Harbi, Mashail M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (04) : 532 - 543
  • [8] A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
    Olivares, G.
    Teferle, F. N.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2405 - 2412
  • [9] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [10] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    B Mathew
    A M Bauer
    P Koistinen
    T C Reetz
    J Léon
    M J Sillanpää
    [J]. Heredity, 2012, 109 : 235 - 245