Linear Arboricity of the Tensor Products of Graphs

被引:0
|
作者
Paulraja, P. [1 ]
Sivasankar, S. [1 ,2 ]
机构
[1] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
[2] NGM Coll, Dept Math, Pollachi 642001, India
关键词
PACKING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear arboricity, la(G), of a graph G is the minimum number of linear forests which partition the edge set of G. Akiyama et al. conjectured that la(G) = inverted right perpendicular Delta(G)+1/2 inverted left perpendicular for any regular graph G. In this paper, we prove this conjecture for K-m x K-n and K-m,K-m x K-n, where x denotes the tensor product of graphs. As a consequence, the above conjecture has been verified to be true for G x H, for any pair of graphs G and H, with Delta(G) = m - 1 and Delta(H) = n - 1, where m and n are the numbers of vertices of G and H, respectively.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 50 条
  • [41] THE LINEAR 2-ARBORICITY OF COMPLETE BIPARTITE GRAPHS
    FU, HL
    HUANG, KC
    ARS COMBINATORIA, 1994, 38 : 309 - 318
  • [42] A note on the linear 2-arboricity of planar graphs
    Wang, Yiqiao
    Hu, Xiaoxue
    Wang, Weifan
    DISCRETE MATHEMATICS, 2017, 340 (07) : 1449 - 1455
  • [43] The Linear 2-Arboricity of Some Planar Graphs
    Xu, Changqing
    Chang, Jingjing
    ARS COMBINATORIA, 2014, 114 : 223 - 227
  • [44] Linear Arboricity of Outer-1-Planar Graphs
    Zhang, Xin
    Li, Bi
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (01) : 181 - 193
  • [45] The Linear Arboricity Conjecture for 3-Degenerate Graphs
    Basavaraju, Manu
    Bishnu, Arijit
    Francis, Mathew
    Pattanayak, Drimit
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2020, 2020, 12301 : 376 - 387
  • [46] COVERING AND PACKING IN GRAPHS .4. LINEAR ARBORICITY
    AKIYAMA, J
    EXOO, G
    HARARY, F
    NETWORKS, 1981, 11 (01) : 69 - 72
  • [47] The linear t-arboricity of complete bipartite graphs
    Zuo, Liancui
    Shang, Chunhong
    Zhang, Shaoqiang
    He, Shengjie
    ARS COMBINATORIA, 2018, 137 : 355 - 364
  • [48] Linear k-arboricity of complete bipartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    UTILITAS MATHEMATICA, 2019, 113 : 17 - 30
  • [49] THE LINEAR ARBORICITY OF GRAPHS ON SURFACES OF NEGATIVE EULER CHARACTERISTIC
    Wu, Jian-Liang
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 23 (01) : 54 - 58
  • [50] Linear Arboricity of Outer-1-Planar Graphs
    Xin Zhang
    Bi Li
    Journal of the Operations Research Society of China, 2021, 9 : 181 - 193