Linear Arboricity of Outer-1-Planar Graphs

被引:0
|
作者
Xin Zhang
Bi Li
机构
[1] Xidian University,School of Mathematics and Statistics
关键词
Outer-1-planar graph; Crossing; Linear arboricity; Polynomial-time algorithm; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. Zhang et al. (Edge covering pseudo-outerplanar graphs with forests, Discrete Math 312:2788–2799, 2012; MR2945171) proved that the linear arboricity of every outer-1-planar graph with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is exactly ⌈Δ/2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \Delta /2\rceil $$\end{document} provided that Δ=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =3$$\end{document} or Δ⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \geqslant 5$$\end{document} and claimed that there are outer-1-planar graphs with maximum degree Δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =4$$\end{document} and linear arboricity ⌈(Δ+1)/2⌉=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil (\Delta +1)/2\rceil =3$$\end{document}. It is shown in this paper that the linear arboricity of every outer-1-planar graph with maximum degree 4 is exactly 2 provided that it admits an outer-1-planar drawing with crossing distance at least 1 and crossing width at least 2, and moreover, none of the above constraints on the crossing distance and crossing width can be removed. Besides, a polynomial-time algorithm for constructing a path-2-coloring (i.e., an edge 2-coloring such that each color class induces a linear forest, a disjoint union of paths) of such an outer-1-planar drawing is given.
引用
收藏
页码:181 / 193
页数:12
相关论文
共 50 条
  • [1] Linear Arboricity of Outer-1-Planar Graphs
    Zhang, Xin
    Li, Bi
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (01) : 181 - 193
  • [2] Incidence Coloring of Outer-1-planar Graphs
    Meng-ke QI
    Xin ZHANG
    Acta Mathematicae Applicatae Sinica, 2024, 40 (03) : 840 - 848
  • [3] Incidence Coloring of Outer-1-planar Graphs
    Qi, Meng-ke
    Zhang, Xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (03): : 840 - 848
  • [4] Drawing outer-1-planar graphs revisited
    Biedl T.
    Journal of Graph Algorithms and Applications, 2022, 26 (01) : 59 - 73
  • [5] List Edge Coloring of Outer-1-planar Graphs
    Zhang, Xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 737 - 752
  • [6] List Edge Coloring of Outer-1-planar Graphs
    Xin ZHANG
    Acta Mathematicae Applicatae Sinica, 2020, 36 (03) : 737 - 752
  • [7] The edge chromatic number of outer-1-planar graphs
    Zhang, Xin
    DISCRETE MATHEMATICS, 2016, 339 (04) : 1393 - 1399
  • [8] List Edge Coloring of Outer-1-planar Graphs
    Xin Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 737 - 752
  • [9] LINEAR ARBORICITY OF 1-PLANAR GRAPHS
    Wang, Weifan
    Liu, Juan
    Wang, Yiqiao
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 435 - 457
  • [10] On list r -hued coloring of outer-1-planar graphs ?
    Liang, Lingmei
    Liu, Fengxia
    Lai, Hong-Jian
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 440