Linear Arboricity of Outer-1-Planar Graphs

被引:0
|
作者
Xin Zhang
Bi Li
机构
[1] Xidian University,School of Mathematics and Statistics
关键词
Outer-1-planar graph; Crossing; Linear arboricity; Polynomial-time algorithm; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. Zhang et al. (Edge covering pseudo-outerplanar graphs with forests, Discrete Math 312:2788–2799, 2012; MR2945171) proved that the linear arboricity of every outer-1-planar graph with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is exactly ⌈Δ/2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \Delta /2\rceil $$\end{document} provided that Δ=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =3$$\end{document} or Δ⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \geqslant 5$$\end{document} and claimed that there are outer-1-planar graphs with maximum degree Δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =4$$\end{document} and linear arboricity ⌈(Δ+1)/2⌉=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil (\Delta +1)/2\rceil =3$$\end{document}. It is shown in this paper that the linear arboricity of every outer-1-planar graph with maximum degree 4 is exactly 2 provided that it admits an outer-1-planar drawing with crossing distance at least 1 and crossing width at least 2, and moreover, none of the above constraints on the crossing distance and crossing width can be removed. Besides, a polynomial-time algorithm for constructing a path-2-coloring (i.e., an edge 2-coloring such that each color class induces a linear forest, a disjoint union of paths) of such an outer-1-planar drawing is given.
引用
收藏
页码:181 / 193
页数:12
相关论文
共 50 条
  • [41] LINEAR 2-ARBORICITY OF PLANAR GRAPHS WITH MAXIMUM DEGREE NINE
    Hu, Xiaoxue
    Kong, Jiangxu
    Wang, Yiqiao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 2193 - 2210
  • [42] Linear arboricity and linear k-arboricity of regular graphs
    Alon, N
    Teague, VJ
    Wormald, NC
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 11 - 16
  • [43] An improved upper bound on the linear 2-arboricity of planar graphs
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2016, 339 (01) : 39 - 45
  • [44] The Linear Arboricity of Planar Graphs without 5-Cycles with Chords
    Chen, Hong-Yu
    Tan, Xiang
    Wu, Jian-Liang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) : 285 - 290
  • [45] The linear arboricity of planar graphs without adjacent 4-cycles
    Wang, Huijuan
    Liu, Bin
    Wu, Jianliang
    UTILITAS MATHEMATICA, 2013, 91 : 143 - 153
  • [46] Linear Arboricity and Linear k-Arboricity of Regular Graphs
    Noga Alon
    V. J. Teague
    N. C. Wormald
    Graphs and Combinatorics, 2001, 17 : 11 - 16
  • [47] A Note on The Linear Arboricity of Planar Graphs without 4-Cycles
    Wu, Jian-Liang
    Hou, Jian-Feng
    Sun, Xiang-Yong
    OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 174 - +
  • [48] The linear 2-arboricity of 1-planar graphs without 3-cycles
    Zhang, Lu
    Liu, Juan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (06)
  • [49] Linear arboricity of degenerate graphs
    Chen, Guantao
    Hao, Yanli
    Yu, Guoning
    JOURNAL OF GRAPH THEORY, 2023, 104 (02) : 360 - 371
  • [50] THE LINEAR ARBORICITY OF COMPOSITION GRAPHS
    WU Jianliang (Department of Economics
    Journal of Systems Science & Complexity, 2002, (04) : 372 - 375